Abstract:
A process at an electronic computing device that tailors an electronic digital assistant generated inquiry response as a function of previously detected user ingestion of related information includes receiving, from a video capture device configured to track a gaze direction of a first user, a video stream including a first field-of-view of the first user. An object is then identified in the video stream first field-of-view remaining in the first field-of-view for a determined threshold period of time, and the object processed via a video processing algorithm to produce object information, which is then stored. Subsequently, an inquiry is received from the first user for information, and it is determined that the inquiry is related to the object information. The electronic digital assistant then provides a response to the inquiry as a function of the object information.
Abstract:
A first device in a group of devices is assigned a role of operating as an elected leader node for the group of devices. The elected leader node determines that a sensor entity of a sensor entity type is associated with one device in the group of communication devices. The elected leader node creates a token and associates the token with the sensor entity. The elected leader node also assigns ownership for the token to one device based on the device being associated with the sensor entity and further based on one or more of: at least one incident allocation criterion; at least one sensor entity allocation criterion; and at least one node allocation criterion. One device executes at least one predefined sensor entity rule associated with the sensor resource type based on ownership of the token assigned to the sensor entity.
Abstract:
A device tracks a user's field of vision/view (FOV). Based the FOV, the device may receive video and/or audio from cameras having similar FOVs. More particularly, the device may fetch a camera feed from a camera having a similar FOV as the user. Alternatively, the device may fetch a camera feed from a camera within the user's FOV.
Abstract:
A communication system (200) comprises a radio communication device (100) comprising a controller (102) having law enforcement information (110) stored therein and a data acquisition device (108) for capturing area conditions surrounding a law enforcement vehicle or law enforcement personnel. The controller (102) detects violations of the law enforcement information based on variety of detection devices, such as video analytics. In response to a detection of a law violation by an offending vehicle, a transmitter (104) within communication device 100 generates an alert to similarly formed secondary devices (220) mounted and/or worn within the network. The system (200) provides an automated response through devices (220) by gathering additional data pertaining to the offending vehicle to detect for additional violations of the law, even across state lines. The system (200) may further facilitate apprehension of an offending vehicle through automated roadblocks.
Abstract:
A method and apparatus for operating a camera are provided herein. During operation of the camera, a first field of view (FOV) for the camera will be determined along with “undesirable” camera directions. A determination is made whether or not to obtain images from the camera based on whether or not the first FOV is aligned with an undesirable camera direction.
Abstract:
A process and system for enabling a 360-degree threat detection sensor system that is physically coupled to a vehicle to monitor an area of interest surrounding the vehicle. An electronic computing device selects an area of interest surrounding a vehicle stop location to be monitored by the sensor system. When the sensor system has an obstructed field-of-view of the area of interest, the electronic computing device determines a new vehicle stop location at which the sensor system has an unobstructed field-of-view of the area of interest when the vehicle is to be stopped at the new vehicle stop location. The electronic computing device then transmits an instruction to a target electronic device to provide an electronic indication identifying the new vehicle stop location to a registered occupant of the vehicle, or autonomously control the vehicle to stop at the new vehicle stop location.
Abstract:
A process for real-time language detection and language heat map data structure modification includes a computing device receiving, from a first electronic audio source, first audio content and identifying a first geographic location of the first audio content. The computing device then determines that the first audio content includes first speech audio and identifies a first language in which the first speech audio is spoken. A first association is created between the first geographic location and the first language, and a real-time language heat-map data structure modified to include the created first association. Then a further action is taken by the computing device as a function of the modified real-time language heat-map data structure.
Abstract:
Authentication methods are used to authenticate, a device1 having an ESN1 (electronic serial number), a device2 having an ESN2, and/or a user of the devices. In one implementation, device1 receives the ESN2 in a near-field signal; derives an authentication result as a function of the ESN1 and ESN2; and sends the authentication result to an authenticator device to use in completing authentication. Authentication is confirmed when the device1 authentication result matches an authentication result independently generated by the authenticator device, which is provisioned with the ESN1 and ESN2. In a second implementation, device1 generates a RAND1 (random number) and sends the RAND1 to device2 over a near-filed link. An authenticator device confirms authentication upon receiving the same RAND1 from both device1 and device2.
Abstract:
A method and apparatus for dynamically controlling quality of service (QoS) is provided herein. During operation, a QoS manager will determine if a device is currently being used by an individual. The QoS of the device will then be tailored based on whether or not the device is currently being used by the individual. Devices that may be running applications, yet unused by anyone may have their QoS reduced. This will allow the QoS to be increased for devices that are currently being used.
Abstract:
A process for interfacing with an electronic communications device including a single input interface (SII) for accessing an electronic digital assistant and voice control includes detecting a first activation of the SII, and responsively playing back a first audio feedback indicative of activation of a voice input function. Then monitoring for one of two or more pre-configured voice control keywords, a first associated with a local electronic communications device function and a second associated with initiating a particular infrastructure-based electronic digital assistant function. When the first, playing back a second audio feedback indicative of acknowledgement of a local device function, and performing the local device function; when the second, playing back, a third audio feedback indicative of acknowledgement of a infrastructure-based electronic digital assistant function, and performing the infrastructure-based electronic digital assistant function.