Abstract:
A signal receiver with adaptive software information adjustment of a communication system is provided. The signal receiver receives a modulated signal comprising a plurality of packets, and includes: a demodulating circuit, configured to demodulate the modulated signal to generate a plurality of sets of soft information corresponding to each packet; a software information adjusting circuit, coupled to the demodulating circuit, configured to adjust the sets of soft information according to a distribution of the sets of soft information corresponding to each packet; a quantizer, coupled to the soft information adjusting circuit, configured to quantize the adjusted sets of soft information to generate a plurality of sets of data; and a decoder, coupled to the quantizer, configured to decode the data.
Abstract:
An apparatus for estimating carrier frequency offset for multipath signals includes an echo signal filtering circuit, an Mth power circuit, a spectrum generating circuit, a peak frequency determining circuit and a frequency offset determining circuit. The echo signal filtering circuit filters out an echo signal from an input signal to generate a filtered signal. The Mth power circuit performs an Mth power calculation on the filtered signal to generate an Mth power calculation result. The spectrum generating circuit generates an Mth power spectrum according to the Mth power calculation result. The peak frequency determining circuit determines a peak frequency corresponding to an amplitude peak from the Mth power spectrum. The frequency offset determining circuit determines an estimated carrier frequency offset according to the peak frequency.
Abstract:
A stereo-phonic frequency modulation receiver includes: a frequency modulation demodulation circuit, receiving a reception signal, and generating a demodulated signal according to the reception signal; a frequency-division demultiplexer, generating a sum signal, a difference signal and a pilot amplitude signal according to the demodulated signal; a dual sound channel separation circuit, generating a left-channel output signal and a right-channel output signal according to the sum signal and a weakened difference signal; and a weakening circuit, weakening the difference signal according to the pilot amplitude signal or a signal-to-noise ratio (SNR) to generate the weakened difference signal.
Abstract:
A bit allocation device includes: a channel estimation unit, performing a channel estimation to generate a plurality of channel qualities of a plurality of subcarriers; a processing unit, coupled to the channel estimation unit, generating a first plurality of bit numbers of the plurality of subcarriers according to the plurality of channel qualities; and a control unit, coupled to the processing unit, generating a second plurality of bit numbers of the plurality of subcarriers according to the first plurality of bit numbers and an upper limit of a total bit number.
Abstract:
A receiver circuit capable of correcting an estimation of a signal-noise characteristic value (e.g., SNR) is provided. The receiver circuit includes an equalizer, a slicer, an estimation circuit and a correction circuit. The equalizer provides an equalized signal according to a received signal. The slicer interprets digital information in the equalized signal and accordingly provides a sliced signal. The estimation circuit provides an initial signal-noise characteristic value according to a difference between the equalized signal and the sliced signal. The correction circuit provides a corresponding correction value according to the initial signal-noise characteristic value, and corrects the initial signal-noise characteristic value according to the corresponding correction value to generate a corrected signal-noise characteristic value.
Abstract:
A wireless system including a decoding module, an estimating module and a searching module is provided. The decoding module receives and decodes a packet to generate a decoding result. The estimating module retrieves package length information from the decoding result, and estimates a transmission end time of the packet according to the packet length information. The searching module determines a search start time according to the transmission end time, and starts packet searching at the search start time.
Abstract:
A symbol decision method includes: storing a look-up table (LUT) to a symbol decision circuit; receiving a first signal, and generating a coordinate signal set corresponding to the first signal according to the first signal, wherein the coordinate signal set is located in a first decision region; and reading the LUT according to the coordinate signal set to output a first symbol corresponding to the first signal, wherein the first symbol is a first constellation point corresponding to the first decision region.
Abstract:
A stereo-phonic frequency modulation receiver includes: a frequency modulation demodulation circuit, receiving a reception signal, and generating a demodulated signal according to the reception signal; a frequency-division demultiplexer, generating a sum signal, a difference signal and a pilot amplitude signal according to the demodulated signal; a dual sound channel separation circuit, generating a left-channel output signal and a right-channel output signal according to the sum signal and a weakened difference signal; and a weakening circuit, weakening the difference signal according to the pilot amplitude signal or a signal-to-noise ratio (SNR) to generate the weakened difference signal.
Abstract:
A signal detection method includes: retrieving a first period component of a signal and at least one second period component adjacent to the first period component; squaring a subtraction result of the first period component and each of the at least one second period component to calculate at least one first square value to further obtain a first detection parameter; squaring an addition result of the first period component and each of the at least one second period component to calculate at least one second square value to further obtain a second detection parameter; dividing the second detection parameter by the first detection parameter to obtain a detection function; determining that the signal is detected when the value of the detection function is greater than or equal to a threshold, or else determining that the signal is not detected.
Abstract:
A symbol decision method includes: storing a look-up table (LUT) to a symbol decision circuit; receiving a first signal, and generating a coordinate signal set corresponding to the first signal according to the first signal, wherein the coordinate signal set is located in a first decision region; and reading the LUT according to the coordinate signal set to output a first symbol corresponding to the first signal, wherein the first symbol is a first constellation point corresponding to the first decision region.