摘要:
Methods and arrangements in a base station are provided for scheduling radio resources to a user equipment. A time offset value is received that is associated with the moment of time when a frame of data was generated in the user equipment buffer. The moment of time when the frame of data was generated in the user equipment buffer is determined, based on the received time offset value. Thus, the buffer state of the user equipment buffer is predicted by using the determined moment of time when the frame of data was generated in the user equipment buffer. Radio resources are granted to the user equipment, based on the predicted buffer state of the user equipment buffer. Methods and arrangements in a user equipment for assisting the base station in scheduling radio resources are also provided herein.
摘要:
Methods and arrangements in a base station are provided for scheduling radio resources to a user equipment. A time offset value is received that is associated with the moment of time when a frame of data was generated in the user equipment buffer. The moment of time when the frame of data was generated in the user equipment buffer is determined, based on the received time offset value. Thus, the buffer state of the user equipment buffer is predicted by using the determined moment of time when the frame of data was generated in the user equipment buffer. Radio resources are granted to the user equipment, based on the predicted buffer state of the user equipment buffer. Methods and arrangements in a user equipment for assisting the base station in scheduling radio resources are also provided herein.
摘要:
This disclosure relates to methods and apparatuses for In-Device Coexistence (IDC) indication. Among other things, the present disclosure presents a method performed by a user equipment (UE). The UE is configured to send 201 an IDC indication message with a same content as in a previously sent IDC indication message if, or when, the UE has performed a handover to another cell (target cell).
摘要:
In a wireless communication network where base stations receive protocol data units (PDUs) from mobile stations for decompression and deciphering for ordered, sequential transfer as service data units (SDUs) to an associated core network, the teachings presented herein provide a method of supporting seamless handover of a mobile station from a source base station to a target base station. By way of example, the teachings herein apply to a network based on the E-UTRA specifications, as promulgated by the 3GPP. However, that example is non-limiting, as the teachings herein apply to any network that employs in-sequence data delivery and duplicate data detection at handover. Broadly, the source base station forwards out-of-sequence SDUs and corresponding sequence number information to the target base station in support of seamless handover, and the target base station uses that information to request retransmissions as needed for packet reordering.
摘要:
In a radio communication system, a relay node that relays data received from an anchor node to user stations, determines and transmits information about a number of active user stations linked to the relay node, to the anchor node. The anchor node allocates radio resources according to the received information about the number of active user stations.
摘要:
A base station of a mobile communication network supports continuity of a Multimedia Broadcast Multicast Service, MBMS, for a terminal. The base station receives, from the terminal, an information element informing the base station of a combination of bands, which the terminal supports for carrier aggregation. The terminal supports MBMS reception on any carrier configurable as a serving cell for the terminal according to the information element. The base station derives, from the received information element, MBMS reception capabilities of the terminal. The base station determines a number of carriers, which are configurable by the base station as serving cell of the terminal, such that the terminal is enabled to receive at least one MBMS.
摘要:
A base station of a mobile communication network supports continuity of a Multimedia Broadcast Multicast Service, MBMS, for a terminal. The base station receives, from the terminal, an information element informing the base station of a combination of bands, which the terminal supports for carrier aggregation. The terminal supports MBMS reception on any carrier configurable as a serving cell for the terminal according to the information element. The base station derives, from the received information element, MBMS reception capabilities of the terminal. The base station determines a number of carriers, which are configurable by the base station as serving cell of the terminal, such that the terminal is enabled to receive at least one MBMS.
摘要:
The present invention relates to a method and apparatus for user terminal and bearer identification that reduces the overhead for LTE relaying (layer 2 and layer 3), which will save radio resources on the backhaul link. Reduction in overhead is achieved by providing a more efficient mechanism for user terminal and bearer identification as compared to using GTP-u and associated UDP/IP headers.
摘要:
The present invention relates to methods and arrangements in a UE and a RBSin a wireless communications system, enabling an efficient handover of the user equipment. The method comprises transmitting (810) a message to the serving radio base station, the message indicating the need for a handover to a cell of a target radio base station. It also comprises observing (820) an indication that a handover request transmitted by the serving radio base station is rejected by the target radio base station, and selecting (830) a recovery cell based on the observed indication when detecting a radio link failure.
摘要:
The present invention relates to a method and arrangement in base station for scheduling user equipments. The base station is adapted to schedule communication from user equipments by sending contention based grants comprising information indicating if the contention based grant should be used for initial transmission or for retransmission. If it is detected that data is not correctly received due to a collision, the information in a following contention based grant is set to indicate that said contention based grant is to be used for initial transmission, while if data is not correctly received, but no collision is detected, the information is set to indicate that the contention based grant is to be used for retransmission. Corresponding method and arrangement in a user equipment is described.