摘要:
A method for reducing the power consumption in a state retaining circuit during a standby mode is disclosed comprising, in an active state, providing a regular power supply (VDD) and a standby power supply (VDD STANDBY) to the state retaining circuit; for a transition from an active state to a standby state, decreasing the regular power supply to ground level and maintaining the standby power supply (VDD STANDBY) thus providing the circuit elements (36, 142, 78, 85) of the state retaining circuit with enough power for retaining the state during standby mode; and for a transition from the standby state to the active state, increasing the regular power supply (VDD) from its ground level to its active level. A circuit for reducing the power consumption in a state retaining circuit during a standby mode is disclosed comprising a control unit (1) providing at least one control signal; a data input unit (3) providing at least one input signal; a data output unit (7) providing at least one output signal; a data storage unit (5) for holding the state of the circuit during an a standby mode; a regular power supply supplying power to the data storage unit (5) during an active mode; and a standby power supply supplying power to at least a part of the data storage unit (5) during the active mode and the standby mode.
摘要:
An integrated circuit (100) has a circuit portion (102) that can be switched to a standby mode through an enable transistor (104), which is coupled between an internal power supply line (120) and an external power supply line (130). The enable transistor (104) is controlled by control circuitry via a control line (160). The control line (160) is coupled to the gates of a first transistor (152) and a further transistor (154) of a logic gate (150). The substrate of the further transistor (154) is coupled to a backbias generator (170). Consequently, when the enable transistor (104) is switched off, the further transistor (154) is enabled and applies a substantial backbias to the gate of the enable transistor (104), thus dramatically reducing the leakage current from the circuit portion (102) through the enable transistor (104).