摘要:
A pre-crash sensing system (10) for a source vehicle (50) having a source vehicle length and a source vehicle width that is coupled to a countermeasure system (30) is described. The system includes an object sensor (17) generating an object distance signal, object relative velocity signal and an object classification signal. A controller (12) is coupled to the object sensor (17). The controller determines a danger zone based on the source vehicle length, source vehicle width and object length and object width. The source vehicle time interval is determined by the controller (12) corresponding to the time the source vehicle is within the danger zone. The controller (12) determines the object time interval corresponding to the time the object is within the danger zone. The controller (12) determines a point of impact in response to the object time interval and the source vehicle time interval. The controller (12) activates the countermeasure in response to the point of impact.
摘要:
A sensing system (10) for an automotive vehicle includes a first radar sensor (18) generating a first and a second range signal, and a second radar sensor (20) generating a first and a second range signal corresponding to two sampling time periods. A controller (12) is coupled to the first radar sensor (18) and the second radar sensor (20). The controller (12) calculates a first position and a second position from the first radar sensor and the second radar sensor range measurements. The controller (12) generates a first set of points corresponding to the first position and a second set of points corresponding to the second position. The controller (12) calculates a plurality of calculated range-rate values in response to the first set of points and the second set of points. The controller (12) compares the plurality of calculated range-rate values to the measured range-rate and selects the closest range-rate from the plurality of calculated range-rate values. A couple of target position points is generated from the first set of points and the second set of points corresponding to the calculated closest range-rate.
摘要:
A pre-crash sensing system (10) for a source vehicle (50) having a source vehicle length and a source vehicle width that is coupled to a countermeasure system (30) is described. The system includes an object sensor (17) having a radar sensor (18) generating an object distance signal and an object relative velocity signal, and a vision system (20) generating an object classification signal. A controller (12) is coupled to the object sensor for activating the countermeasure system (30) based on the object distance, relative velocity and the object classification signal.
摘要:
A pre-crash sensing system (10) for a source vehicle (50) having a source vehicle length and a source vehicle width that is coupled to a countermeasure system (30) is described. The system includes an object sensor (17) generating object distance signal, object relative velocity signal and an object classification signal. A controller (12) is coupled to the object sensor (17). The controller determines a danger zone (52) based on the source vehicle length, source vehicle width, object length and object width. The controller determines a source vehicle time interval corresponding to the time the source vehicle is within the danger zone. Controller (12) determines an object time interval corresponding to the time the object is within the danger zone and when the source vehicle time interval corresponds with the target vehicle time interval. The controller activates the countermeasure system (30) when the source vehicle time interval coincides with the target vehicle time interval.
摘要:
A vehicle crash safety system includes a pre-crash sensing system generating an object threat assessment and vehicle dynamics data, an occupant sensing system generating occupant characteristic data, and an Occupant Safety Reference Model (OSRM) controller for generating a reference safety restraint deployment profile as a function of the object threat assessment, vehicle dynamics data and occupant characteristic data. An active restraint adaptation (ARA) controller in operative communication with the OSRM controller and a decentralized restraint controller. The ARA controller sends restraint deployment targets, and the safety restraint deployment profile to the decentralized restraint controller. The ARA controller may modify input signals to the decentralized controller based on the real-time occupant position trajectory. The decentralized restraint controller is adapted to operate the restraint system as a function of signals from the ARA controller and real-time occupant-restraint system interactions.
摘要:
A pre-crash sensing system is coupled to a countermeasure system that has at least a first countermeasure and a second countermeasure. The pre-crash sensing system has a vision system (26) that generates an object size signal and an object distance signal. A controller (12) is coupled to the vision system (26) and deploys either the first countermeasure or first and second countermeasures in response to the object distance and object size.
摘要:
A control system for an automotive vehicle (50) has a radar or lidar system (22) used to generate a remote object signal. A vision system (26) confirms the presence of the target object in the detection zone. A controller (12) is coupled to the remote object sensor and a vehicle dynamics sensor and the brake system. The controller predicts a host vehicle trajectory in response to the host vehicle dynamic signal, determines an azimuth angle for the target object, determines an actuation value in response to the target range signal, the target relative velocity signal, the host vehicle trajectory, host vehicle brake system status and the target azimuth angle. The controller (12) activates a countermeasure in response to the actuation value.
摘要:
A control system (10) for an automotive vehicle (50) has a remote object sensor (18) that generates an object signal in the presence of an object. A vehicle trajectory sensor (34) generates a signal indicative of the vehicle traveling on a curved road. A vehicle speed sensor (32) generates a speed signal corresponding to the longitudinal speed of the vehicle. A controller (12) is coupled to the object sensor (18), the vehicle trajectory sensor, and the vehicle speed sensor. When the remote object sensor (18) indicates the presence of an object with a minimum cross section in a pre-defined decision zone meeting pre-defined relative velocity criteria, and when the vehicle speed is above a first threshold and below a second threshold, and when said vehicle trajectory signal indicates the vehicle traveling on a curved road with a radius of curvature above a threshold value, a vehicle safety countermeasure system (40) is deployed.
摘要:
A leaky cable object detection system (10) for a vehicle (12) includes a transmitter (20) coupled to a leaky cable antenna (29) and transmitting a first object detection signal (64). A receiver (26) is electronically coupled to the leaky cable antenna (29) and receives a second object detection signal (65) formed by reflection of the first object detection signal on an object (69). A controller (18) is electrically coupled to the transmitter (20) and the receiver (26) and generates a countermeasure signal in response to the second object detection signal (65).
摘要:
The present invention provides a safety system control method for a host automotive vehicle. The method includes providing a first vehicle safety countermeasure and providing a second vehicle safety countermeasure operable in a first mode corresponding to the first vehicle safety countermeasure being inactive and a second mode corresponding to the first vehicle safety countermeasure being activated. The method also determines a collision threat with a target object and selectively activates the first vehicle safety countermeasure as a function of the collision threat. The second vehicle safety countermeasure is then activated in the second mode when the first vehicle safety countermeasure is activated. Otherwise, the second vehicle safety countermeasure is activated in the first mode when the first vehicle safety countermeasure is inactive.