摘要:
A three-dimensional relief can be produced from one or more two-dimensional digital (2D) images. A height field is computed from the 2D images and illumination direction information. The height field comprises a multiplicity of geometric surface elements arrayed in a 2D field corresponding to the pixels of the one or more 2D images. Each geometric surface element corresponds to a pixel of each of the digital images and has at least one height parameter representing a displacement from a surface floor. Once the height field is computed, optimizations can be made to the height field including adding and adjusting albedo and glossy surface finishing. The height field can be used to fabricate relief elements in a material, such that each relief element corresponds in shape, position in the height field, and height above the surface floor, to one of the geometric surface elements in the height field.
摘要:
A three-dimensional relief can be produced from one or more two-dimensional digital (2D) images. A height field is computed from the one or more 2D images and illumination direction information. The height field comprises a multiplicity of geometric surface elements arrayed in a 2D field corresponding to the pixels of the one or more 2D images. Each geometric surface element corresponds to a pixel of each of the digital images and has at least one height parameter representing a displacement from a surface floor. Once the height field is computed, optimizations or adjustments can optionally be made to the height field. The height field can be used to fabricate relief elements in a material, such that each relief element corresponds in shape, position in the height field, and height above the surface floor, to one of the geometric surface elements in the height field.
摘要:
A three-dimensional relief can be produced from one or more two-dimensional digital (2D) images. A height field is computed from the one or more 2D images and illumination direction information. The height field comprises a multiplicity of geometric surface elements arrayed in a 2D field corresponding to the pixels of the one or more 2D images. Each geometric surface element corresponds to a pixel of each of the digital images and has at least one height parameter representing a displacement from a surface floor. Once the height field is computed, optimizations or adjustments can optionally be made to the height field. The height field can be used to fabricate relief elements in a material, such that each relief element corresponds in shape, position in the height field, and height above the surface floor, to one of the geometric surface elements in the height field.
摘要:
A method for generating a self-occlusion surface for an image. The method includes receiving the image, receiving a selection of a material with which to construct the self-occlusion surface, and receiving calibration data associated with the material. A plurality of pits is determined, based on the image and calibration data, to define within the self-occlusion surface. A preview of the self-occlusion surface is rendered based on the plurality of pits and the material.
摘要:
A three-dimensional relief can be produced from one or more two-dimensional digital (2D) images. A height field is computed from the 2D images and illumination direction information. The height field comprises a multiplicity of geometric surface elements arrayed in a 2D field corresponding to the pixels of the one or more 2D images. Each geometric surface element corresponds to a pixel of each of the digital images and has at least one height parameter representing a displacement from a surface floor. Once the height field is computed, optimizations can be made to the height field including adding and adjusting albedo and glossy surface finishing. The height field can be used to fabricate relief elements in a material, such that each relief element corresponds in shape, position in the height field, and height above the surface floor, to one of the geometric surface elements in the height field.
摘要:
The disclosure provides a technique for recursively partitioning a 3D model of an object into two or more components such that each component fits within a predefined printing volume. The technique includes determining a set of planar cuts each of which partitions the 3D model into at least two components, evaluating one or more objective functions for each cut in the set of planar cuts, and selecting a cut from the set of planar cuts based on the evaluations of the objective functions. In addition, the technique includes, upon determining that a component resulting from the selected cut does not fit within the predefined printing volume, further partitioning that component.
摘要:
A computer-implemented method is provided for physical face cloning to generate a synthetic skin. Rather than attempt to reproduce the mechanical properties of biological tissue, an output-oriented approach is utilized that models the synthetic skin as an elastic material with isotropic and homogeneous properties (e.g., silicone rubber). The method includes capturing a plurality of expressive poses from a human subject and generating a computational model based on one or more material parameters of a material. In one embodiment, the computational model is a compressible neo-Hookean material model configured to simulate deformation behavior of the synthetic skin. The method further includes optimizing a shape geometry of the synthetic skin based on the computational model and the captured expressive poses. An optimization process is provided that varies the thickness of the synthetic skin based on a minimization of an elastic energy with respect to rest state positions of the synthetic skin.
摘要:
A set of two-dimensional layers is determined based on a digital three-dimensional model. An image corresponding to each of the layers is rendered on each of a corresponding number of sheets of at least partially transparent material. The sheets of material are assembled together to produce a three-dimensional structure corresponding to the digital model.
摘要:
A set of two-dimensional layers is determined based on a digital three-dimensional model. An image corresponding to each of the layers is rendered on each of a corresponding number of sheets of at least partially transparent material. The sheets of material are assembled together to produce a three-dimensional structure corresponding to the digital model.
摘要:
A computer implemented method tracks 3D positions of an object moving in a scene. A sequence of images is acquired of the scene with a set of cameras such that each time instant a set of images are acquired of the scene, in which each image includes pixels. Each set of images is aggregated into a synthetic aperture image including the pixels, and the pixels in each the set of images are matched corresponding to multiple locations and multiple depths of a target window with an appearance model to determine scores for the multiple locations and multiple depths. A particular location and a particular depth having a maximal score is selected as the 3D position of the moving object.