摘要:
A process for automatic control of a respirator changes between two phases of respiration by checking a detected respiratory breathing activity signal for a threshold criterion. If the threshold criterion is met, a changeover is made. A dynamic threshold curve, used for changing over into an inspiration phase, is held, after the beginning of the present expiration phase, at high values until the end of a selected inspiratory refractory period, and is then lowered monotonically, dropping to an inspiratory threshold target value at the expected point in time of the phase duration maximum of the present expiration phase. A dynamic threshold curve, which is held at low values, after the beginning of the present inspiration phase, until the end of a selected expiratory refractory period, is raised monotonically, increasing to an expiratory threshold target value at the expected point in time of the phase duration maximum of the present inspiration phase and is then changed over into the expiration phase when the breathing activity signal drops below the threshold curve for the expiration. The phase duration of the inspiration and expiration phases or breath duration (inspiration and expiration phases) is stored in each case, and the expected points in time of the phase duration maxima are derived from the distributions of the phase durations in relation to the beginning of the respective phase of respiration or from the distribution of the breath durations in relation to the beginning of the previous phase of respiration.
摘要:
A process is provided for the automatic control of a respirator for changing over (triggering) between consecutive phases of respiration (inspiration and expiration phases), wherein a pneumatic breathing activity signal upneu(t) and a non-pneumatic breathing activity signal unon-pneu(t) of a patient are picked up. The intervals Δpneu(t) and Δnon-pneu(t) to the associated threshold variables are respectively determined starting from a preset reference point in time since the beginning of the present phase of respiration. The intervals are standardized to one another at δpneu(t) and δnon-pneu(t), such that the intervals have equal interval values at a preset reference point in time. The standardized intervals δpneu(t) and δnon-pneu(t) are averaged to a mean interval indicator and a changeover is made into the next phase of respiration when the combined interval indicator is 0.
摘要:
A process for the automatic control of a respirator with a changeover between phases of respiration (inspiration and expiration), by a control unit checking a breathing activity signal for a threshold criterion. If the threshold criterion is met, a changeover is made and the control unit controls the fan of the respirator such that a pneumatic respiration variable (airway pressure, flow) is brought from an actual value to a preset target value for the new phase of respiration. The control unit further divides the change in the respiration variable, from the actual value to the target value, into a plurality of partial steps and checks the current breathing activity signal for the threshold criterion after each partial step. If this threshold criterion is no longer met, the state of operation of the respirator returns to the state before the last changeover, and otherwise, continues with the next partial step.
摘要:
A respirator or anesthesia system for respirating a patient (20) includes a gas delivery device (3); at least one gas line (4) for forming a breathing air line system, especially a breathing air circulation system; at least one EMG sensor for detecting the electromyographic muscle activity of the respiratory muscles of a patient (20) being respirated; and a control (9) for controlling and/or regulating the output of the gas delivery device (3) as a function of the detected muscle activity of the respiratory muscles. An adaptation of the part of respiration to the performance capacity of the respiratory muscles of the patient (20) being respirated is made possible without invasive measurement of the electromyographic activity of the respiratory muscles by the at least one EMG sensor being an sEMG sensor (6).
摘要:
A process for controlling a respirator with reduced gas excess, wherein a load situation (37) of an expiration valve is polled in a continuous sequence and a flow value (36) is reduced step by step from a preset starting flow value (41) and wherein the flow value (36) is again increased when a predetermined value (44) is exceeded.
摘要:
A process for operating a respirator and/or an anesthesia device with measurement of a set percent Peak Expiratory Flow (% PEF) (15) or percent Peak Inspiratory Flow (% PIF) and regulation ofthe measured % PEF (15) or % PIF to the set % PEF (15) or % PIF. Furthermore, a suitable respirator and/or anesthesia device are provided.
摘要:
A process for operating a respirator and/or anesthesia device in the APRV mode with the % PEF criterion which includes a detection of a spontaneous expiratory effort by the patient and initiation of a pressure release phase when the detected spontaneous expiratory effort by the patient falls within a predetermined trigger window (Tfreg). A device is provided that is operated correspondingly.
摘要:
A device is provided for respirating a patient by means of high-frequency ventilation, which has at least one device for setting a desired tidal volume by a user, and which has at least one regulating device for regulating an amplitude of the respiration pressure and/or at least one regulating device for regulating the oscillation frequency on the basis of the tidal volume determined. A corresponding method is provided for regulating a device for respirating a patient by high-frequency ventilation and a method is provided for respirating a patient.