摘要:
A process for automatic control of a respirator changes between two phases of respiration by checking a detected respiratory breathing activity signal for a threshold criterion. If the threshold criterion is met, a changeover is made. A dynamic threshold curve, used for changing over into an inspiration phase, is held, after the beginning of the present expiration phase, at high values until the end of a selected inspiratory refractory period, and is then lowered monotonically, dropping to an inspiratory threshold target value at the expected point in time of the phase duration maximum of the present expiration phase. A dynamic threshold curve, which is held at low values, after the beginning of the present inspiration phase, until the end of a selected expiratory refractory period, is raised monotonically, increasing to an expiratory threshold target value at the expected point in time of the phase duration maximum of the present inspiration phase and is then changed over into the expiration phase when the breathing activity signal drops below the threshold curve for the expiration. The phase duration of the inspiration and expiration phases or breath duration (inspiration and expiration phases) is stored in each case, and the expected points in time of the phase duration maxima are derived from the distributions of the phase durations in relation to the beginning of the respective phase of respiration or from the distribution of the breath durations in relation to the beginning of the previous phase of respiration.
摘要:
A process is provided for the automatic control of a respirator for changing over (triggering) between consecutive phases of respiration (inspiration and expiration phases), wherein a pneumatic breathing activity signal upneu(t) and a non-pneumatic breathing activity signal unon-pneu(t) of a patient are picked up. The intervals Δpneu(t) and Δnon-pneu(t) to the associated threshold variables are respectively determined starting from a preset reference point in time since the beginning of the present phase of respiration. The intervals are standardized to one another at δpneu(t) and δnon-pneu(t), such that the intervals have equal interval values at a preset reference point in time. The standardized intervals δpneu(t) and δnon-pneu(t) are averaged to a mean interval indicator and a changeover is made into the next phase of respiration when the combined interval indicator is 0.
摘要:
A process for the automatic control of a respirator with a changeover between phases of respiration (inspiration and expiration), by a control unit checking a breathing activity signal for a threshold criterion. If the threshold criterion is met, a changeover is made and the control unit controls the fan of the respirator such that a pneumatic respiration variable (airway pressure, flow) is brought from an actual value to a preset target value for the new phase of respiration. The control unit further divides the change in the respiration variable, from the actual value to the target value, into a plurality of partial steps and checks the current breathing activity signal for the threshold criterion after each partial step. If this threshold criterion is no longer met, the state of operation of the respirator returns to the state before the last changeover, and otherwise, continues with the next partial step.
摘要:
A respirator or anesthesia system for respirating a patient (20) includes a gas delivery device (3); at least one gas line (4) for forming a breathing air line system, especially a breathing air circulation system; at least one EMG sensor for detecting the electromyographic muscle activity of the respiratory muscles of a patient (20) being respirated; and a control (9) for controlling and/or regulating the output of the gas delivery device (3) as a function of the detected muscle activity of the respiratory muscles. An adaptation of the part of respiration to the performance capacity of the respiratory muscles of the patient (20) being respirated is made possible without invasive measurement of the electromyographic activity of the respiratory muscles by the at least one EMG sensor being an sEMG sensor (6).
摘要:
Electromyographic and mechanomyographic parameters of a patient are detected accurately with few artifacts in a medical sensor device (11) for a patient. The medical sensor device (11) includes an electrode (12) for detecting an electric voltage on a body surface of the patient, a holding element (10) with preferably at least one transmission means for transmitting or conducting signals or electric currents, at least one mechanical connection means (14) for the detachable mechanical connection of electrode (12) with holding element (10), and at least one electric connection means (15) for the detachable electric connection of electrode (12) with holding element (10). the holding element (10) comprising at least one sensor for detecting at least one medical parameter of the patient.
摘要:
A cable for electromedical application and especially for recording the ECG of patients of different body shapes and body sizes is provided including a textile composite (1) formed of a carrier layer (2) and a cover layer (3). At least one electric line (4) is accommodated between the carrier layer (2) and the cover layer (3). After manufacture in a cost-effective manner, the cable offers sufficient protection against short circuits in case of penetration of moisture, on the one hand, and adapts to curved and irregularly shaped structures without problems, on the other hand. The cable textile composite (1) is flexibly deformable without destruction, wherein at least one electric line (4) is electrically insulated by an insulation (5) against the carrier layer (2) and the cover layer (3).
摘要:
A stretchable belt (1) provided for medical purposes for use on the body of a patient has at least one sensor (8) for detecting at least one parameter of the patient's body. An adaptation to different body sizes and motions of the patient is provided without separate length adjusting members being necessary or without the need to stock different belt sizes. Furthermore, the belt is able to be manufactured at a low cost and makes possible simple and reliable handling, even for patients. The belt material (1) has at least one material area (2) with a lower spring rate in the longitudinal extension than at least one material area (3) with a higher spring rate of the belt (1).
摘要:
A process for determining the respiration rate of a patient by means of vessel plethysmography. Provisions are made according to the present invention for determining the electric impedance between at least two electrodes by means of a control and analysis unit connected to the body via a plurality of electrodes, for which the control and analysis unit is set up to send an alternating voltage through the body and to determine an indicator of the impedance between at least two electrodes, and to automatically record and evaluate the determined value for the indicator of the impedance as a function of the time in order to determine the respiration rate therefrom.
摘要:
A device (1) and a corresponding method are provided for determining and/or monitoring the respiration rate based on measurement with more than one sensor (5, 7, 9, 13, 15). The device may be part of a monitor for determining and/or monitoring the respiration rate. The second and/or additional sensors are different form the first sensor and have a different manor of operation from the first sensor.
摘要:
A device for detecting the condition of flow in a respiration system combines the function of a nonreturn valve with the function of flow measurement in a common device. The device includes a valve arrangement (1) with a valve disk (9) and with a valve body (8), wherein the position of a valve disk (9) in relation to a valve seat (11) is detected. An indicator for a flow and a direction of flow (5), (6) is determined from the position of the valve disk (9). The position of the valve disk (9) can be determined inductively, electrically, electromechanically or optically. The flow and direction of flow (5), (6) determined can be used to control the respiration in a medical device.