Abstract:
The present invention uses an AC voltage instead of DC voltage on an ion gate to filter/selectively pass ions. The ions that pass through the AC ion gate can be further separated in a spectrometric instrument. An ion mobility spectrometer using the AC ion gate can achieve better gating performance. For a time of flight ion mobility spectrometer with an AC ion gate, a narrow pulse of selected ions can be passed into a drift tube where they are separated based on their low field ion mobility. Moreover, when the AC voltage at the AC ion gate has a waveform as used for differential ion mobility spectrometry, the time of flight ion mobility spectrometer is converted into a two dimensional separation spectrometer, where ions are first separated based on their high field ion mobility and then further separated based on their low field ion mobility.
Abstract:
An ion mobility spectrometer wherein ions are separated along a drift axis while providing a drift gas flow in a direction that is substantially neither in the direction of the drift axis nor opposite to the drift axis. An ion mobility spectrometer and operation methods use a cross-directional gas flow in a drift tube and/or a segmented drift tube for pre-separation.
Abstract:
The present invention relates to improving the ability of a hyphenated instrument to analyze a sample benefiting from having the first instrument's analysis of the same sample. A fast switching mechanism can be used as the interface between an ion mobility spectrometer (IMS) and a mass spectrometer (MS) such that the obtained IMS spectrum is converted into a timing diagram that controls the vacuum inlet's size dynamically during analysis of a neutral and/or charged chemical and/or biological species such that a smaller pumping system can be used. In various operational modes of the IMS-MS device, mobility-separated ions are allowed to pass through an ion gate and the vacuum inlet for mass analysis.
Abstract:
An ion mobility spectrometry apparatus and method wherein ions are selected using an AC gate, then separated along a drift axis while providing a drift gas flow in a direction that is substantially neither in the direction of the drift axis nor opposite to the drift axis.
Abstract:
The present invention relates to improving the ability of a hyphenated instrument to analyze a sample benefiting from having the first instrument's analysis of the same sample. A fast switching mechanism can be used as the interface between an ion mobility spectrometer (IMS) and a mass spectrometer (MS) such that the obtained IMS spectrum is converted into a timing diagram that controls the vacuum inlet's size dynamically during analysis of a neutral and/or charged chemical and/or biological species such that a smaller pumping system can be used.
Abstract:
A second gate in an Ion Mobility Spectrometer is used to select or block different time windows of the ion mobility spectrum. A second gate in the Ion Mobility Mass Spectrometer is used to modulate peak intensities in the IMS spectrum, allowing each peak in the IMS spectrum to be unambiguously matched with its set of fragment ions in a subsequent MS-MS mass spectrum.
Abstract:
An ion mobility spectrometry method wherein ions are separated along a drift axis while providing a drift gas flow in a direction that is substantially neither in the direction of the drift axis nor opposite to the drift axis. Ion mobility spectrometer operation methods use a cross-directional gas flow in a drift tube and/or a segmented drift tube for pre-separation.
Abstract:
The present invention relates to improving the ability of a hyphenated instrument to analyze a sample benefiting from having the first instrument's analysis of the same sample. A fast switching mechanism can be used as the interface between an ion mobility spectrometer (IMS) and a mass spectrometer (MS) such that the obtained IMS spectrum is converted into a timing diagram that controls the vacuum inlet's size dynamically during analysis of a neutral and/or charged chemical and/or biological species such that a smaller pumping system can be used. In various operational modes of the IMS-MS device, mobility-separated ions are allowed to pass through an ion gate and the vacuum inlet for mass analysis.
Abstract:
The present invention relates to improving the ability of a hyphenated instrument to analyze a sample benefiting from having the first instrument's analysis of the same sample. A fast switching mechanism can be used as the interface between an ion mobility spectrometer (IMS) and a mass spectrometer (MS) such that the obtained IMS spectrum is converted into a timing diagram that controls the vacuum inlet's size dynamically during analysis of a neutral and/or charged chemical and/or biological species such that a smaller pumping system can be used.
Abstract:
The present invention relates to improving the ability of a hyphenated instrument to analyze a sample benefiting from having the first instrument's analysis of the same sample. A fast switching mechanism can be used as the interface between an ion mobility spectrometer (IMS) and a mass spectrometer (MS) such that the obtained IMS spectrum is converted into a timing diagram that controls the vacuum inlet's size dynamically during analysis of a neutral and/or charged chemical and/or biological species such that a smaller pumping system can be used.