摘要:
A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives a set of IR samples from the memory, forms a turbo code word from the set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching on the set of IR samples, performs error detection operations, and extracts information from a MAC packet that it produces.
摘要:
A baseband processing module includes TX processing components, a processor, memory, an RX interface, and a cell searcher module. The TX processing components receive outbound data, process the outbound data to produce a baseband TX signal, and output the baseband TX signal to a RF front end of the RF transceiver. The RX interface receives a baseband RX signal from the RF front end carrying a WCDMA signal. The cell searcher module receives the baseband RX signal, scans for WCDMA energy within the baseband RX signal, acquires slot synchronization to the WCDMA signal based upon correlation with a Primary Synchronization Channel (PSCH) of the WCDMA signal, acquires frame synchronization to, and identify a code group of, the WCDMA signal based upon correlation with a Secondary Synchronization Channel (SSCH) of the WCDMA signal, and identifies the scrambling code of the WCDMA signal based upon correlation with a Common Pilot Channel (CPICH) of the WCDMA signal.
摘要:
A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives at least one set of IR samples from the memory, forms a turbo code word from the at least one set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching, performs error detection operations, and extracts information from a MAC packet that it produces.
摘要:
A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives a set of IR samples from the memory, forms a turbo code word from the set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching on the set of IR samples, performs error detection operations, and extracts information from a MAC packet that it produces.
摘要:
A Radio Frequency (RF) receiver includes a RF front end and a baseband processing module coupled to the RF front end that is operable to receive a time domain signal that includes time domain training symbols and time domain data symbols. The baseband processing module includes a channel estimator operable to process the time domain training symbols to produce a time domain channel estimate, a Fast Fourier Transformer operable to convert the time domain channel estimate to the frequency domain to produce a frequency domain channel estimate, a weight calculator operable to produce frequency domain equalizer coefficients based upon the frequency domain channel estimate, an Inverse Fast Fourier Transformer operable to converting the frequency domain equalizer coefficients to the time domain to produce time domain equalizer coefficients, and an equalizer operable to equalize the time domain data symbols using the time domain equalizer coefficients.
摘要:
A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives a set of IR samples from the memory, forms a turbo code word from the set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching on the set of IR samples, performs error detection operations, and extracts information from a MAC packet that it produces.
摘要:
A system for processing radio frequency (RF) signals includes a searcher and a plurality of Cluster Path Processor (CPPs). The searcher detects a maximum signal energy level and position of at least one of a plurality of individual distinct path signals in a signal cluster of a first information signal, wherein at least a portion of the plurality of individual distinct path signals is received within a duration of a corresponding delay spread. The sampling position is used as a starting sampling location by the plurality of CPPs, including a first information signal CPP and a second information signal CPP. Fine sampling positions of the plurality of CPPs are based upon channel energy estimates for the plurality of individual distinct path signals. CPP outputs are employed to produce channel estimates, which are themselves used in subsequent equalization operations. Sampling positions may change over time in order to satisfy alignment criteria.
摘要:
A Radio Frequency (RF) receiver includes a RF front end and a baseband processing module coupled to the RF front end that is operable to receive a time domain signal that includes time domain training symbols and time domain data symbols. The baseband processing module includes a channel estimator operable to process the time domain training symbols to produce a time domain channel estimate, a Fast Fourier Transformer operable to convert the time domain channel estimate to the frequency domain to produce a frequency domain channel estimate, a weight calculator operable to produce frequency domain equalizer coefficients based upon the frequency domain channel estimate, an Inverse Fast Fourier Transformer operable to converting the frequency domain equalizer coefficients to the time domain to produce time domain equalizer coefficients, and an equalizer operable to equalize the time domain data symbols using the time domain equalizer coefficients.
摘要:
A system for processing radio frequency (RF) signals includes a searcher and a Cluster Path Processor (CPP). The searcher detects a maximum signal energy level and position of at least one of a plurality of individual distinct path signals in a signal cluster, wherein at least a portion of the plurality of individual distinct path signals is received within a duration of a corresponding delay spread. The CPP includes a group finger array having a plurality of group fingers and determines a coarse sampling position of the group finger array based upon the position of the at least one of a plurality of individual distinct path signals in the signal cluster. The CPP determines a fine sampling position based upon determines a composite channel energy estimate for the plurality of individual distinct path signals. Using this fine sampling position, the CPP receives at least a portion of the plurality of individual distinct path signals by the group finger array.
摘要:
A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.