摘要:
The specification discloses methods and apparatus for selecting the better of two or more copies of a cell in a cell-oriented redundant switching system connected to an external communications network. In the preferred embodiment, the best cell copy selection aligns redundantly transmitted cell streams before selecting cells for insertion in the data stream. Because the streams are aligned before the selection is made, the best cell copy selector compares each cell at the same instant in time, rather than basing its selection on past events.
摘要:
The specification discloses methods and apparatus for selecting the better of two or more copies of a cell in a cell-oriented redundant switching system connected to an external communications network. In the preferred embodiment, the best cell copy selection aligns redundantly transmitted cell streams before selecting cells for insertion in the data stream. Because the streams are aligned before the selection is made, the best cell copy selector compares each cell at the same instant in time, rather than basing its selection on past events.
摘要:
A communication system includes a first ingress content processor that receives information associated with a first traffic type. The first ingress content processor places the information associated with the first traffic type into a system cell having a common system cell format. A second ingress content processor receives information associated with a second traffic type. The second ingress content processor places the information associated with the second traffic type into a system cell having the common system cell format. A switch fabric receives system cells from the first and second ingress content processors. System cells from the first ingress content processor are automatically sent to the switch fabric while system cells from the second ingress content processor are required to be scheduled before being sent to the switch fabric. The switch fabric separately queues system cells carrying payloads associated with the first traffic type from system cells carrying payloads associated with the second traffic type. The switch fabric services system cells carrying payloads associated with the first traffic type prior to servicing system cells carrying payloads associated with the second traffic type.
摘要:
A communication system includes a first ingress content processor that receives information associated with a first traffic type. The first ingress content processor places the information associated with the first traffic type into a system cell having a common system cell format. A second ingress content processor receives information associated with a second traffic type. The second ingress content processor places the information associated with the second traffic type into a system cell having the common system cell format. A switch fabric receives system cells from the first and second ingress content processors. System cells from the first ingress content processor are automatically sent to the switch fabric while system cells from the second ingress content processor are required to be scheduled before being sent to the switch fabric. The switch fabric separately queues system cells carrying payloads associated with the first traffic type from system cells carrying payloads associated with the second traffic type. The switch fabric services system cells carrying payloads associated with the first traffic type prior to servicing system cells carrying payloads associated with the second traffic type.
摘要:
A communication system includes a first ingress content processor that receives information associated with a first traffic type. The first ingress content processor places the information associated with the first traffic type into a system cell having a common system cell format. A second ingress content processor receives information associated with a second traffic type. The second ingress content processor places the information associated with the second traffic type into a system cell having the common system cell format. A switch fabric receives system cells from the first and second ingress content processors. System cells from the first ingress content processor are automatically sent to the switch fabric while system cells from the second ingress content processor are required to be scheduled before being sent to the switch fabric. The switch fabric separately queues system cells carrying payloads associated with the first traffic type from system cells carrying payloads associated with the second traffic type. The switch fabric services system cells carrying payloads associated with the first traffic type prior to servicing system cells carrying payloads associated with the second traffic type.
摘要:
Example embodiments of the present invention relate to a multi wavelength-routing-plane optical architecture. Example embodiments include a Reconfigurable Optical Add Drop Multiplexer (ROADM) supporting a multi wavelength-routing-plane optical architecture, and optical networks supporting a multi wavelength-routing-plane optical architecture.
摘要:
Example embodiments of the present invention relate to a software programmable reconfigurable optical add drop multiplexer (ROADM) comprising of a plurality of wavelength switches and a plurality of waveguide switches, wherein when the plurality of waveguide switches are set to a first switch configuration, the software programmable ROADM provides n degrees of an n-degree optical node, and wherein when the waveguide switches are set to a second switch configuration, the software programmable ROADM provides k degrees of an m-degree optical node.
摘要:
Example embodiments of the present invention relate to an optical node comprising of at least two degrees, a plurality of directionless add/drop ports, a plurality of primary WDM transmitters and receivers, and at least one protection WDM transmitter and receiver, wherein the at least one protection WDM transmitter and receiver can transmit and receive in place of any of the plurality of primary WDM transmitters and receivers.
摘要:
Example embodiments of the present invention relate to a multi wavelength-routing-plane optical architecture. Example embodiments include a Reconfigurable Optical Add Drop Multiplexer (ROADM) supporting a multi wavelength-routing-plane optical architecture, and optical networks supporting a multi wavelength-routing-plane optical architecture.
摘要:
Example embodiments and methods of the present invention relate to utilizing optical transmitters and optical receivers embedded within reconfigurable optical add-drop multiplexers of optical nodes to identify problematic optical spans within an optical network.