摘要:
Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic configured to repetitively and variably sample a (k, t, E) space associated with an object to acquire a set of NMR signals. Members of the set of NMR signals are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The varying parameters may include flip angle, echo time, RF amplitude, and other parameters. The NMR apparatus may also include a signal logic configured to produce an NMR signal evolution from the NMR signals, and a characterization logic configured to characterize a resonant species in the object as a result of comparing acquired signals to reference signals.
摘要:
Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic configured to repetitively and variably sample a (k, t, E) space associated with an object to acquire a set of NMR signals. Members of the set of NMR signals are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The varying parameters may include flip angle, echo time, RF amplitude, and other parameters. The NMR apparatus may also include a signal logic configured to produce an NMR signal evolution from the NMR signals, a matching logic configured to compare a signal evolution to a known, simulated or predicted signal evolution, and a characterization logic configured to characterize a resonant species in the object as a result of the signal evolution comparisons.
摘要:
Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic configured to repetitively and variably sample a (k, t, E) space associated with an object to acquire a set of NMR signals. Members of the set of NMR signals are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The varying parameters may include flip angle, echo time, RF amplitude, and other parameters. The NMR apparatus may also include a signal logic configured to produce an NMR signal evolution from the NMR signals, a matching logic configured to compare a signal evolution to a known, simulated or predicted signal evolution, and a characterization logic configured to characterize a resonant species in the object as a result of the signal evolution comparisons.
摘要:
Apparatus, methods, and other embodiments associated with multi-scale orthogonal matching pursuit (OMP) for magnetic resonance imaging (MRI) relaxometry are described. One example method includes controlling a nuclear magnetic resonance (NMR) apparatus to cause selected nuclei in an item to resonate by applying radio frequency (RF) energy to the item and then acquiring multiple series of magnetic resonance (MR) images of the item, the series of MR images having different scales. The example method includes controlling the NMR apparatus to produce a combined signal evolution from a first signal evolution associated with a first series of MR images and a second signal evolution associated with a second series of MR images and to characterize relaxation of the selected nuclei in the item as a function of an OMP that compares the combined signal evolution to a set of combined comparative signal evolutions.
摘要:
Apparatus, methods, and other embodiments associated with self-justification fitting for magnetic resonance imaging (MRI) relaxation parameter quantification are described. One example nuclear magnetic resonance (NMR) apparatus includes a self-justification fitting logic configured to selectively include and exclude data points from a set of data points associated with NMR signals based, at least in part, on their impact on a fit attribute (e.g., standard deviation). In one embodiment, the self-justification is configured to select a subset of data points from the set of data points as a function of values for a fit attribute computed from fitting at least two different subsets of data points from the set of data points to a known NMR signal evolution.
摘要:
Apparatus, methods, and other embodiments associated with self-justification fitting for magnetic resonance imaging (MRI) relaxation parameter quantification are described. One example nuclear magnetic resonance (NMR) apparatus includes a self-justification fitting logic configured to selectively include and exclude data points from a set of data points associated with NMR signals based, at least in part, on their impact on a fit attribute (e.g., standard deviation). In one embodiment, the self-justification is configured to select a subset of data points from the set of data points as a function of values for a fit attribute computed from fitting at least two different subsets of data points from the set of data points to a known NMR signal evolution.
摘要:
Apparatus, methods, and other embodiments associated with wireless magnetic field monitoring (wMFM) in magnetic resonance imaging (MRI) are described. One example apparatus includes a wMFM module configured to receive an MFM signal from an MFM probe and to wirelessly transmit modulated MFM signals produced from the received MFM signals to an MRI apparatus. The MRI apparatus is configured with a wireless receiver that receives and processes the modulated MFM signals into information used in an image reconstruction. The MRI apparatus includes an MRI reconstruction logic configured to produce an MR image from the MRI signal based, at least in part, on the magnetic field measurement information.
摘要:
In a method for determining transmission coil-specific RF excitation pulses for component coils of a transmission coil array for accelerated, PPA-based volume-selective magnetic resonance excitation of a tissue region of a patient, and a magnetic resonance tomography apparatus operating according to the method, a first series of volume-selective RF excitation pulses along a first transmission trajectory in transmission κ-space is successively individually radiated by the component coils of the transmission coil array and the resulting magnetic resonance signals are received, and a second series of volume-selected RF excitation pulses along a further reduced transmission trajectory in transmission κ-space is simultaneously radiated by all component coils of the transmission coil array and the resulting magnetic resonance signals are received, and a complete transmission trajectory in transmission κ-space is then determined from which combination coefficients are calculated, and the coil specific RF excitation pulses are then calculated from the combination coefficients in order to produce a desired excitation profile.
摘要:
A method for verifying a source-synchronous communication interface of a processor is disclosed. A software model of a first device having a source-synchronous communication interface and a software model of a second device capable of communicating with the first device via the source-synchronous communication interface are provided. The source-synchronous communication interface includes an applied clock line, an address line, an echo clock line, and a data line. A simulation of a data request from the first device model to the second device model via an applied clock signal along with an address on the applied clock line and the address line is initially performed. The requested data is then received by the first device model from the second device model via the data line after various delays between the applied clock signal and an echo clock signal on the applied clock line and the echo clock line, respectively. Finally, the requested data received by the first device model is verified as to its veracity.
摘要:
Example apparatus and methods order projections in a 3D MRI acquisition to achieve improved equidistant spacing or to achieve improved adherence to a target distribution. The equidistant or target spacing may exist in k-space and/or in kt-space. In one embodiment, the improved equidistant spacing is a substantially uniform spacing. The substantially uniform spacing may be achieved using a modification of a charge repulsion analysis that treats points of projections that intersect the surface of a 3D volume to be imaged as point charges distributed on the 3D volume. In another embodiment, the target spacing may be uniform, non-uniform, uniform in parts and non-uniform in other parts, and other combinations.