Abstract:
The inventive force measuring cell consists of a plate (2) which is provided with a circular hole (2), the axis of which is perpendicular to the surface of said plate (2) and to the direction of the force that is to be measured. Said axis also lies within the neutral surface of the plate (2). The plate (2) can also be the web of a carrier. A measuring transducer (12) is inserted into the hole (3) in order to measure any modification of the size of the diameter of said hole (3) on a plane that is inclined at an angle of 45° counter to the direction of the force (F) to be measured. A lateral force is created in the direction of y in addition to a transverse stress &tgr; with a component &tgr;xy by applying force in the direction of y when at least one side of the plate (2) is clamped in the base. The originally circular hole (3) is deformed into an ellipse. The measuring transducer (12) consists of a measuring transformer with an oscillating string.
Abstract:
The invention provides a method and a device for measuring the weight of a load, which is displaced with a load lifting device over the edge of a raised loading surface and thus pulled onto the same or pushed down from the same, wherein during this operating process, in a support of the load lifting device loaded by the load, the force currently acting due to the displacement of the load is measured during the passage through a predetermined weighing window and the weight of the load is determined mathematically from the course thereof. Preferably, the load sensor is constructed as a tube which is equipped with two deformation sensors equipped essentially at right angles to one another.
Abstract:
The invention relates to a load measuring element for the braces of a machine in order to determine the force transmitted by the load measuring element, comprising a carrier element which can be exposed to the force by way of a force introduction element and in turn rests on a support. The force introduction element, the carrier element, and the support interact with each other during operation such that the carrier element flexibly deforms under the weight load, wherein a measurement element is provided for determining said flexible deformation, In this way, an associated height adjustment can be specifically activated in order to adjust the machine such that it can be set up without impermissible distortion of the frame.
Abstract:
The invention relates to a load measuring element for the braces of a machine in order to determine the force transmitted by the load measuring element, comprising a carrier element which can be exposed to the force by way of a force introduction element and in turn rests on a support. The force introduction element, the carrier element, and the support interact with each other during operation such that the carrier element flexibly deforms under the weight load, wherein a measurement element is provided for determining said flexible deformation, hi this way, an associated height adjustment can be specifically activated in order to adjust the machine such that it can be set up without impermissible distortion of the frame.
Abstract:
The invention provides a method and a device for measuring the weight of a load, which is displaced with a load lifting device over the edge of a raised loading surface and thus pulled onto the same or pushed down from the same, wherein during this operating process, in a support of the load lifting device loaded by the load, the force currently acting due to the displacement of the load is measured during the passage through a predetermined weighing window and the weight of the load is determined mathematically from the course thereof. Preferably, the load sensor is constructed as a tube which is equipped with two deformation sensors equipped essentially at right angles to one another.
Abstract:
The invention relates to a dynamic scale for bulk material, having two swivel arms (2) and two load-lifting arms (8) mounted to the free end of said swivel arms, with one hole (7) being located in each of the swivel arms (2) and positioned transversely to the extension of the swivel arm and also transversely to the neutral fiber brought about by the flexural load. A pipe (9) is fitted into the hole (7) and is welded thereto. The pipe (9) comprises two sensors (14, 15) transversely to the longitudinal axis thereof, said sensors being located at an angle of substantially 90° to each other and each being disposed at an angle of ±45° to the direction of the shear stress component τxy. Under the influence of the shear stress, the cross section of the tube (9) is deformed into an ellipse that is inclined at about 45°, the shorter and longer axis (11, 13) thereof being measured using the sensors (14, 15). Said sensors (14, 15) each comprise two force inlets (16, 17), which are inserted with pretension in suitable recesses in the tube (9).
Abstract:
A method and equipment for checking a support device such as used in an elevator installation. The method and equipment detects reductions in cross-section of the tensile supports in the support device by heating the tensile supports with electrical current flow and determining the temperature at surface of surrounding sheathing. An increase in the temperature from an original measurement is an indicator of damage to the tensile supports.
Abstract:
The invention relates to a dynamic scale for bulk material, having two swivel arms (2) and two load-lifting arms (8) mounted to the free end of said swivel arms, with one hole (7) being located in each of the swivel arms (2) and positioned transversely to the extension of the swivel arm and also transversely to the neutral fiber brought about by the flexural load. A pipe (9) is fitted into the hole (7) and is welded thereto. The pipe (9) comprises two sensors (14, 15) transversely to the longitudinal axis thereof, said sensors being located at an angle of substantially 90° to each other and each being disposed at an angle of ±45° to the direction of the shear stress component τxy. Under the influence of the shear stress, the cross section of the tube (9) is deformed into an ellipse that is inclined at about 45°, the shorter and longer axis (11, 13) thereof being measured using the sensors (14, 15). Said sensors (14, 15) each comprise two force inlets (16, 17), which are inserted with pretension in suitable recesses in the tube (9).
Abstract:
The device comprises a shaft to which is applied a torque to be measured. The shaft is mounted in two ball bearings which are secured in a pair of supports coupled by a cylindrical metallic piece forming a shield against electromagnetic influences from the outside. Concentric disks facing each other and at close proximity from each other are secured by means of connecting tubes respectively to each extremity of the shaft. Each disk comprises non transparent sectors for electromagnetic waves separated by transparent sectors, the sectors being arranged in a regular angular configuration on the disks. The relative angular position of the disks is such that in the absence of a torque applied to the shaft, the non transparent sectors of one disk and the transparent sectors of the other disk overlap. The disks form a shielding element the effect of which being variable in dependence on their relative angular position. Transmitting and receiving coils separated by the disks are provided in the supports at close proximity of the disks. The transmitting coil receives a constant high frequency current from a generator and the signal induced in the receiving coil is detected, this signal being dependent on the variable shielding effect of the disks.
Abstract:
An ice warning system comprising a diaphragm set into vibration at one of its frequencies of resonance by a piezoelectric cell. The diaphragm is coupled thermally to a metallic plate alternately cooled and heated respectively below and above the ambient temperature by Peltier elements connected to a reversible DC current generator. A microprocessor measures any variation of the resonance frequency caused by a deposit of ice on the diaphragm during the cooling or heating periods and delivers an alarm signal if this variation of frequency reaches and/or exceeds a predetermined value. The microprocessor controls the period, intensity and direction of the current delivered by the DC current generator as a function of the ambient temperature and the temperature of the diaphragm. The ice warning system is preferably utilized in the aeronautical field for indicating the likelihood of natural ice formation on the engines and the wings of aircraft.