Abstract:
In the various embodiments, decoders, methods, systems and devices exploit state information associated with transmitted packets to facilitate decoding operations. Specifically, in at least some embodiments, packets are received by a receiver. If the packet is unable to be decoded because of corruption, state information associated with that packet is buffered at the receiver and used for subsequent decoding. A retransmitted packet is then received, checked for corruption and, if not corrupted, is decoded leveraging the previously-buffered state information associated with the corrupted packet. In an event that one or more retransmitted packets are corrupted, this process can be repeated a number of times.
Abstract:
A discrete Fourier transform calculation apparatus includes a plurality of multiplier units, and a plurality of butterfly calculation units. Each butterfly calculation unit is configured to perform simultaneous calculations for at least two stages of a fast Fourier transform (FFT) algorithm by using shared resources of the butterfly calculation unit. Each butterfly calculation unit includes a respective memory device to store input data for the corresponding at least two stages of the FFT algorithm, and a respective butterfly calculator coupled to the respective memory device. Each butterfly calculation unit also includes a respective controller coupled to the respective memory device and the respective butterfly calculator. The respective controller is configured to control the corresponding butterfly calculation unit to calculate the corresponding at least two stages of the FFT algorithm. The plurality of butterfly calculation units and the plurality of multiplier units are coupled in series.
Abstract:
A coexistence system including a first transceiver module, an interface, a second transceiver module, and an arbitration module. The first transceiver module, in a first network device, is configured to generate at least one first request signal. The first transceiver module operates according to a first wireless communication standard. The at least one first request signal requests transmission or reception for the first transceiver module. The interface is configured to generate a first priority signal based on the at least one first request signal. The first priority signal indicates a first priority level of first data signals corresponding to the at least one first request signal. The second transceiver module, in the first network device, is configured to (i) generate at least one second request signal, and (ii) generate a second priority signal. The second transceiver module operates according to a second wireless communication standard. The at least one second request signal requests transmission or reception for the first transceiver module. The second priority signal indicates a second priority level of second data signals corresponding to the at least one second request signal. The arbitration module is configured to (i) based on the first priority level and the second priority level, arbitrate the at least one first request signal and the at least one second request signal, and (ii) based on the arbitration of the at least one first request signal and the at least one second request signal, selectively connect antennas to the first transceiver module and the second transceiver module in one of multiple configurations.
Abstract:
A coexistence system including a first transceiver module in a first network device, generating a first request signal that requests transmission or reception for the first transceiver module, and operating according to a first wireless communication standard. An interface, based on the first request signal, generates a first priority signal, which indicates a first priority level of first data signals. A second transceiver module is in the first network device and generates a second request and priority signals. The second transceiver module operates according to a second wireless communication standard. The second request signal requests transmission or reception for the first transceiver module. The second priority signal indicates a second priority level of second data signals. An arbitration module (i) based on the first and second priority levels, arbitrates the first and second request signals, and (ii) based thereon, selectively connects antennas to the first and second transceiver modules.