摘要:
A light emitting device is disclosed which includes a semiconductor block, an active layer disposed in such a fashion as to penetrate through the mutually facing end surfaces of the semiconductor block, and an electrode disposed on the main plane of the semiconductor block, wherein the electrode consists of a first electrode portion disposed along the active layer, and a second electrode portion continuing integrally the first electrode portion and having the periphery thereof out of contact from the periphery of the second main plane of the semiconductor block. A current is caused to uniformly flow through the entire active layer, and a light emitting operation is carried out stably. Since the electrode is not disposed on the periphery of the semiconductor block, the occurrence of junction short-curcuit, which might otherwise occur when a wafer is cut off to produce laser chips or when the corners of the chip break off, can be reduced.
摘要:
A light emitting device is disclosed which includes a semiconductor block, an active layer disposed in such a fashion as to penetrate through the mutually facing end surfaces of the semiconductor block, and an electrode disposed on the main plane of the semiconductor block, wherein the electrode consists of a first electrode portion disposed along the active layer, and a second electrode portion continuing integrally the first electrode portion and having the periphery thereof out of contact from the periphery of the second main plane of the semiconductor block. A current is caused to uniformly flow through the entire active layer, and a light emitting operation is carried out stably. Since the electrode is not disposed on the periphery of the semiconductor block, the occurrence of junction short-circuit, which might otherwise occur when a wafer is cut off to produce laser chips or when the corners of the chip break off, can be reduced.
摘要:
A light emitting device is disclosed which includes a semiconductor block, an active layer disposed in such a fashion as to penetrate through the mutually facing end surfaces of the semiconductor block, and an electrode disposed on the main plane of the semiconductor block, wherein the electrode consists of a first electrode portion disposed along the active layer, and a second electrode portion continuing integrally the first electrode portion and having the periphery thereof out of contact from the periphery of the second main plane of the semiconductor block. A current is caused to uniformly flow through the entire active layer, and a light emitting operation is carried out stably. Since the electrode is not disposed on the periphery of the semiconductor block, the occurrence of junction short-curcuit, which might otherwise occur when a wafer is cut off to produce laser chips or when the corners of the chip break off, can be reduced.
摘要:
An optical semiconductor device includes a light emitting element disposed on a silicon sub-mount having a light receiving element formed in a surface region. By virtue of integral arrangement of the light emitting element and the light receiving element, a single lens can be used for both optical transmission and optical reception, whereby an optical communication system can be manufactured very inexpensively. Further, transmission and reception can be carried out simultaneously.