摘要:
A cast steel with excellent workability, characterized in that not less than 60% of the total cross section thereof is occupied by equiaxed crystals, the diameters (mm) of which satisfy the following formula: D
摘要:
A cast steel with excellent workability, characterized in that not less than 60% of the total cross section thereof is occupied by equiaxed crystals, the diameters (mm) of which satisfy the following formula: D
摘要:
Disclosed is a steel sheet in which the amounts of respective elements in chemical components, which are represented by mass %, satisfy the following Expression 1 and Expression 2. In addition, the steel contains Ti-included-carbonitrides as inclusions, and the number density of the Ti-included-carbonitrides having a long side of 5 μm or more is 3 pieces/mm2 or less. 0.3≦{Ca/40.88+(REM/140)/2}/(S/32.07) (Expression 1) Ca≦0.005−0.0035×C (Expression 2)
摘要:
Disclosed is a steel sheet in which the amounts of respective elements in chemical components, which are represented by mass %, satisfy the following Expression 1 and Expression 2. In addition, the steel contains Ti-included-carbonitrides as inclusions, and the number density of the Ti-included-carbonitrides having a long side of 5 μm or more is 3 pieces/mm2 or less. 0.3≦{Ca/40.88+(REM/140)/2}/(S/32.07) (Expression 1) Ca≦0.005−0.0035×C (Expression 2).
摘要:
The present invention provides a non-oriented electrical steel sheet having crystal grains of small diameter and excellent workability before stress relief annealing and having crystal grains of largely grown diameter and excellent iron loss property after stress relief annealing and a method for producing the same, and relates to a low iron loss non-oriented electrical steel sheet excellent in workability, containing, in weight %, 0.010% or less of C, 0.1 to 1.5% of Mn, 0.1 to 4% of Si, 0.1 to 4% of Al, wherein the latter three elements satisfy the formula Si+Mn+Al≦5.0%, and 0.0005 to 0.0200% of Mg, or further containing 0.005% or more of Ca, wherein the total amount of Mg and Ca is 0.0200% or less, or further containing 0.005% or more of REM, wherein the total amount of Mg and REM is 0.0200% or less, or further containing 0.005% or more of Ca and REM, wherein the total amount of Mg, Ca and REM is 0.0200% or less, and containing the remainder consisting of Fe and unavoidable impurities.
摘要:
A method for improving the internal center segregation and center porosity of a continuously cast slab, wherein an unsolidified side edge portion and a given area at the upstream side of the cast slab during continuous casting are defined as a plane reducing zone; a holding means is provided having two sets of top and bottom walking plane reducing compressing means at the plane reducing zone, front and rear supporting shafts common to the sets, eccentric cams for each set arranged at the front and the rear supporting shafts for holding and releasing of the cast slab, and a front and a rear displacement mechanism; the cast slab holding position of the upper surface of the bottom side walking plane reducing means of each set is set within 0.5 mm of the deviation on a passline of a continuous casting machine; the cast slab holding position of the lower surface of the top walking plane reducing means of each set is set at a desired reduction taper having a plane reduction ratio of 0.5 to 5.0% in accordance with an amount of solidified shrinkage of an unsolidified cast slab in a longitudinal compressing plane reducing zone and an amount of the heat shrinkage of the solidified shell; said eccentric cam set and the front and the rear displacement mechanisms are driven to operate the holding, moving forward, opening, and moving backward alternately thereby compressively carrying the cast slab; wherein the improvement comprises the steps of measuring, for each the two sets of plane reducing means the holding distance of the cast slab at before and after the top and the bottom walking plane reducing means, obtaining reduction taper from the measured holding distances and predetermined distances of distance measured positions before and after the top and the bottom walking plane reducing means, obtaining the difference between the reduction taper, then controlling positions of the front and the rear supporting shafts so that each set of walking plane reducing means is given to the desired reduction taper when the obtained difference is 0.1 mm/m or less, and bringing the walking plane reducing means having the measured reduction taper least different from the desired reduction taper close to the other measured reduction taper by changing the plane reduction ratio within a range of 0.5 to 5.0% by controlling the amount of rotation for releasing the holding of the eccentric cams, when the difference is more than 0.1 mm/m and the reduction taper are all less than said desired reduction taper.
摘要:
Two kinds of molten steels are poured into a continuous casting mold. Direct current magnetic flux is applied which direct current magnetic flux extends in a direction transverse to the thickness (corresponding to the thickness of a casting slab) of the poured content at a position of a certain height of the mold. The molten steels are supplied above and below a boundary of static magnetic fields formed by the direct current magnetic flux longitudinally or in a casting direction. When a difference (.DELTA..rho.) between a density .rho..sub.1 of the molten steel for an outer layer supplied above the static magnetic fields and a density .rho..sub.2 of the molten steel for an inner layer supplied below the static magnetic fields, is expressed by .DELTA..rho.=.rho..sub.1 -.rho..sub.2 (g/cm.sup.3), a density (tesla) of the direct current magnetic flux is determined by the following formula:a) in case of .DELTA..rho.