摘要:
A discharge lamp which maintains a high lumen maintenance factor even when operated for a long time is obtained in a discharge lamp which has a silica glass discharge vessel and a pair of opposed electrodes in the discharge vessel and in which the discharge vessel is filled with at least 0.15 mg/mm3 mercury, a rare gas with argon as the main component, and 2×10−4 μmole/mm3 to 7×10−3 μmole/mm3 bromine by meeting the following conditions when feeding a direct current of 5 mA between the electrodes and a glow discharge produced: 1.0×10−4≦b/a≦1.2×10−1 Condition (1) c/a≦1.4×10−1 Condition (2) d/a≦1.2×10−2 Condition (3) e/a≦1.4×10−2 Condition (4) where a is the emission intensity of the argon with a wavelength of 668 nm, b is the emission intensity of OH with a wavelength of 309 nm, c is the emission intensity of hydrogen (H) with a wavelength of 656 nm, d is the emission intensity of C2 with a wavelength of 517 nm, and e is the emission intensity of CH with a wavelength of 431 nm.
摘要翻译:在放电灯放电灯中,即使在放电容器中具有石英玻璃放电容器和一对相对电极的放电灯,也可以在放电容器中填充放电灯 至少0.15mg / mm 3汞,一种以氩为主要成分的稀有气体,以及2×10 -4 Mumole / mm 3至7×10 3, 通过满足以下条件,在电极之间馈送5mA的直流电流和辉光放电产物时,通过满足以下条件:SUP> -3 / m 3 /
摘要:
A reflector for a high pressure discharge lamp device including a metallic component such that when the lamp is damaged the reflector is not broken or when the reflector is broken, spraying of lamp fragments can be effectively prevented. In the reflector for a high pressure discharge lamp device, the glass reflector houses a discharge lamp of the short arc type in which the discharge vessel is filled with greater than or equal to 0.15 mg/mm3 of mercury, the outside surface of the glass reflector is surrounded by a metallic component.
摘要:
The purpose of the present invention is to make it possible to output stable light by optimizing the wavelength conversion efficiency in a wavelength conversion element without employing an optical detection device such as a photo diode in a laser light source device. A fundamental light wave emitted from a semiconductor laser (2) is wavelength converted by a wavelength conversion element (5) and is emitted therefrom. A lighting circuit (20) supplies electric power for the aforementioned semiconductor laser (2) to turn on the semiconductor laser (2). A control unit (21) controls the operation of the device while controlling the amount of power supplied to a heater means (7) such that the wavelength conversion element (5) reaches a temperature at which optimum wavelength conversion efficiency is acquired. The temperature detected by a temperature detection means (Th1) is input to the control unit (21), and the control unit (21) defines the temperature of the wavelength conversion element (5) at which the maximum amount of power is supplied to the heater means (7) as a set temperature at which the optimum wavelength conversion efficiency is acquired, and performs feedback control of the temperature of the wavelength conversion element (5) so that the temperature of the wavelength conversion element (5) reaches the aforementioned set temperature by controlling the amount of heat supplied from the heater means (7).
摘要:
The purpose of the present invention is to make it possible to output stable light by optimizing the wavelength conversion efficiency in a wavelength conversion element without employing an optical detection device such as a photo diode in a laser light source device. A fundamental light wave emitted from a semiconductor laser (2) is wavelength converted by a wavelength conversion element (5) and is emitted therefrom. A lighting circuit (20) supplies electric power for the aforementioned semiconductor laser (2) to turn on the semiconductor laser (2). A control unit (21) controls the operation of the device while controlling the amount of power supplied to a heater means (7) such that the wavelength conversion element (5) reaches a temperature at which optimum wavelength conversion efficiency is acquired. The temperature detected by a temperature detection means (Th1) is input to the control unit (21), and the control unit (21) defines the temperature of the wavelength conversion element (5) at which the maximum amount of power is supplied to the heater means (7) as a set temperature at which the optimum wavelength conversion efficiency is acquired, and performs feedback control of the temperature of the wavelength conversion element (5) so that the temperature of the wavelength conversion element (5) reaches the aforementioned set temperature by controlling the amount of heat supplied from the heater means (7).
摘要:
In a light source device, that obtains high light usage efficiency by projecting simultaneously two or more of three primary color lights X, Y and Z. Moreover, each color light X, Y and Z is divided into two in terms of time so that p-wave and s-wave linear polarization lights are formed, such that the synthesized light of the p-wave linear polarization lights enters a first spatial modulation element and the synthesized light of the s-wave linear polarization lights enters a second spatial modulation element to permit gradation control of each color light.
摘要:
A discharge lamp lighting apparatus for lighting a discharge lamp, comprises an inverter which reverses a polarity of an output voltage and applies alternating voltage to the discharge lamp, and an inverter control circuit which generates an inverter control signal defining a polarity reversal operation of the inverter, based on a polarity reversal timing signal, wherein when the number of polarity reversals in one cycle of the polarity reversal timing signal is even, the inverter control circuit intermittently performs a first operation in which successive pulse-like part of the polarity reversal operation based on the polarity reversal timing signal is disregarded by odd number of times.
摘要:
An electrode for an extra-high pressure discharge lamp, comprises large diameter portion which is symmetrical with respect to an axis of the electrode, a small diameter portion connected to the large diameter portion, wherein the large diameter portion is connected to the small diameter portion through an outer surface portion of the electrode, wherein a stripe lines like pattern portion, extending along an electrode axis direction, is formed on a portion to be brought in contact with glass of a lamp, and wherein unevenness is formed over an entire circumference of the electrode in a cross sectional view of the electrode taken along a direction perpendicular to the electrode axis direction.
摘要:
Disclosed herein is a light source device for converting excited light into long-wavelength light having a longer wavelength than the excited light. The light source includes: an excited light source emitting excited light; a wavelength conversion member including a light transmission plate and a wavelength conversion layer formed on the light transmission plate and receiving the excited light from the excited light source and emitting long-wavelength light having a longer wavelength than the excited light, the excited light emitted from the excited light source being incident upon one side of the wavelength conversion layer; a light reflection member provided at one side of the wavelength conversion member and including an excited light transmission window transmitting the excited light; and a filter member provided at the other side of the wavelength conversion member and reflecting the excited light and transmitting the long-wavelength light.
摘要:
Process for producing a discharge lamp having a silica discharge vessel with an emission space in which there is a pair of electrodes at least 0.15 mg/mm3 of mercury, argon (Ar), and halogen by measuring the relation b/a1 between the emission intensity a1 of argon (Ar) at a wavelength of 668 nm and the emission intensity b of OH radicals at a wavelength of 309 nm in a state of glow discharge of the discharge lamp; supplying hydrogen into the discharge vessel of the discharge lamp; measuring the relation c/a2 between the emission intensity a2 of argon (Ar) at a wavelength of 668 nm and the emission intensity c of OH radicals at a wavelength of 309 nm in the state of glow discharge of the discharge lamp; and fixing the difference c/a2−b/a1 at a value in the range of 0.001 to 15.
摘要:
Process for producing a discharge lamp having a silica discharge vessel with an emission space in which there is a pair of electrodes at least 0.15 mg/mm3 of mercury, argon (Ar), and halogen by measuring the relation b/a1 between the emission intensity a1 of argon (Ar) at a wavelength of 668 nm and the emission intensity b of OH radicals at a wavelength of 309 nm in a state of glow discharge of the discharge lamp; supplying hydrogen into the discharge vessel of the discharge lamp; measuring the relation c/a2 between the emission intensity a2 of argon (Ar) at a wavelength of 668 nm and the emission intensity c of OH radicals at a wavelength of 309 nm in the state of glow discharge of the discharge lamp; and fixing the difference c/a2−b/a1 at a value in the range of 0.001 to 15.