摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light. The mirror can be moved in a direction perpendicular to an angular dispersion direction of the VIPA generator, to change the amount of chromatic dispersion provided to the input light.
摘要:
A heater coats an optical fiber. In addition, an apparatus, such as an optical switch, a Mach-Zehnder interferometer, or a Michelson interferometer, includes optical fibers transmitting light in optical paths, and 3-dB couplers, coupled to the optical fibers, splitting input light into the optical paths, and recombining output light into output paths. The apparatus also includes the heater coating a portion of one of the optical fibers and heating the one of the optical fibers to change the optical phase of the light traveling in the one of the optical paths. A second heater coats a portion of another of the optical fibers and heats the another of the optical fibers to change the relative optical phase of the light traveling in the one of the optical paths and the another of the optical paths. A detector is coupled to one of the optical paths and detects power of leaked light in the optical path and a heater controller is coupled to the detector and to the heater, and controls the heater based upon the power of the leaked light.
摘要:
A virtually imaged phased array (VIPA) which receives an input light at a respective wavelength, and produces a spatially distinguishable output light in accordance with the wavelength of the input light. The VIPA has first and second surfaces. The second surface has a reflectivity which causes a portion of light incident thereon to be transmitted therethrough. The first and second surfaces are positioned so that the input light is reflected a plurality of times between the first and second surfaces to cause a plurality of lights to be transmitted through the second surface. The plurality of transmitted lights interfere with each other to produce an output light which is spatially distinguishable from an output light produced for an input light having any other wavelength within the continuous range of wavelengths. A spacer element has an approximately zero thermal expansion coefficient and maintains the relative positioning between the first and second surfaces to be constant. Preferably, the magnitude of the thermal expansion coefficient of the spacer element is less than or equal to 10−5/° C. Even more preferable, the magnitude of the thermal expansion coefficient of the spacer element is less than or equal to 10−6/° C.
摘要:
A virtually imaged phased array (VIPA) which receives an input light at a respective wavelength, and produces a spatially distinguishable output light in accordance with the wavelength of the input light. The VIPA has first and second surfaces. The second surface has a reflectivity which causes a portion of light incident thereon to be transmitted therethrough. The first and second surfaces are positioned so that the input light is reflected a plurality of times between the first and second surfaces to cause a plurality of lights to be transmitted through the second surface. The plurality of transmitted lights interfere with each other to produce an output light which is spatially distinguishable from an output light produced for an input light having any other wavelength within the continuous range of wavelengths. A spacer element has an approximately zero thermal expansion coefficient and maintains the relative positioning between the first and second surfaces to be constant. Moreover, an adjusting element is positioned between the first and second surfaces and is adjustable to change the optical distance between the first and second surfaces.
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light.
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light.
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distiguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light. The mirror can be moved in a direction perpendicular to an angular dispersion direction of the VIPA generator, to change the amount of chromatic dispersion provided to the input light.
摘要:
Various configurations of a virtually imaged phased array (VIPA) generator in combination with a mirror to compensate for chromatic dispersion. A VIPA generator produces a light traveling from the VIPA generator. In some embodiments, a variable curvature mirror is positioned to reflect the light back to the VIPA generator. A rotation axis around which the mirror is rotated and a translation path for the rotation axis are provided, to change the curvature of the mirror where the output light is reflected. In other embodiments, a plurality of mirrors have different surface curvatures. A holder has a rotation axis and holds the plurality of mirrors equidistantly from the rotation axis. The holder is rotatable around the rotation axis to bring a different, respective mirror in position to reflect light produced by a VIPA generator back to the VIPA generator. In other embodiments, a rotating mirror is rotatable about a rotation axis to reflect light produced by a VIPA generator to a respective fixed mirror. In still other embodiments, an off-axis parabolic mirror is rotatable about a rotation axis to reflect light produced by a VIPA generator to a respective fixed mirror.
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light.
摘要:
An optical device, such an as optical circulator or switch, which includes a birefringent tapered element, such as a birefringent wedge, positioned between first and second Faraday rotators. Light travels through the first Faraday rotator, the first birefringent tapered element and then the second Faraday rotator, in order, and along travel paths which are not parallel to each other.