Microcavity-enhanced optical bolometer

    公开(公告)号:US11635330B2

    公开(公告)日:2023-04-25

    申请号:US17335017

    申请日:2021-05-31

    Abstract: Optical microcavity resonance measurements can have readout noise matching the fundamental limit set by thermal fluctuations in the cavity. Small-heat-capacity, wavelength-scale microcavities can be used as bolometers that bypass the limitations of other bolometer technologies. The microcavities can be implemented as photonic crystal cavities or micro-disks that are thermally coupled to strong mid-IR or LWIR absorbers, such as pyrolytic carbon columns. Each microcavity and the associated absorber(s) rest on hollow pillars that extend from a substrate and thermally isolate the cavity and the absorber(s) from the rest of the bolometer. This ensures that thermal transfer to the absorbers is predominantly from radiation as opposed to from conduction. As the absorbers absorb thermal radiation, they shift the resonance wavelength of the cavity. The cavity transduces this thermal change into an optical signal by reflecting or scattering more (or less) near-infrared (NIR) probe light as a function of the resonance wavelength shift.

    All-optical spatial light modulators

    公开(公告)号:US11022826B2

    公开(公告)日:2021-06-01

    申请号:US16872731

    申请日:2020-05-12

    Abstract: A spatial light modulator (SLM) comprised of a 2D array of optically-controlled semiconductor nanocavities can have a fast modulation rate, small pixel pitch, low pixel tuning energy, and millions of pixels. Incoherent pump light from a control projector tunes each PhC cavity via the free-carrier dispersion effect, thereby modulating the coherent probe field emitted from the cavity array. The use of high-Q/V semiconductor cavities enables energy-efficient all-optical control and eliminates the need for individual tuning elements, which degrade the performance and limit the size of the optical surface. Using this technique, an SLM with 106 pixels, micron-order pixel pitch, and GHz-order refresh rates could be realized with less than 1 W of pump power.

    All-optical spatial light modulator

    公开(公告)号:US11860458B2

    公开(公告)日:2024-01-02

    申请号:US17216272

    申请日:2021-03-29

    CPC classification number: G02F1/025 G02F2202/32 G02F2203/12 G02F2203/15

    Abstract: A spatial light modulator (SLM) comprised of a 2D array of optically-controlled semiconductor nanocavities can have a fast modulation rate, small pixel pitch, low pixel tuning energy, and millions of pixels. Incoherent pump light from a control projector tunes each PhC cavity via the free-carrier dispersion effect, thereby modulating the coherent probe field emitted from the cavity array. The use of high-Q/V semiconductor cavities enables energy-efficient all-optical control and eliminates the need for individual tuning elements, which degrade the performance and limit the size of the optical surface. Using this technique, an SLM with 106 pixels, micron-order pixel pitch, and GHz-order refresh rates could be realized with less than 1 W of pump power.

    High-speed wavelength-scale spatial light modulators with two- dimensional tunable microcavity arrays

    公开(公告)号:US11614643B2

    公开(公告)日:2023-03-28

    申请号:US16876477

    申请日:2020-05-18

    Abstract: A reflective spatial light modulator (SLM) made of an electro-optic material in a one-sided Fabry-Perot resonator can provide phase and/or amplitude modulation with fine spatial resolution at speeds over a Gigahertz. The light is confined laterally within the electro-optic material/resonator layer stack with microlenses, index perturbations, or by patterning the layer stack into a two-dimensional (2D) array of vertically oriented micropillars. Alternatively, a photonic crystal guided mode resonator can vertically and laterally confine the resonant mode. In phase-only modulation mode, each SLM pixel can produce a π phase shift under a bias voltage below 10 V, while maintaining nearly constant reflection amplitude. This high-speed SLM can be used in a wide range of new applications, from fully tunable metasurfaces to optical computing accelerators, high-speed interconnects, true 2D phased array beam steering, beam forming, or quantum computing with cold atom arrays.

    All-Optical Spatial Light Modulator

    公开(公告)号:US20210240016A1

    公开(公告)日:2021-08-05

    申请号:US17216272

    申请日:2021-03-29

    Abstract: A spatial light modulator (SLM) comprised of a 2D array of optically-controlled semiconductor nanocavities can have a fast modulation rate, small pixel pitch, low pixel tuning energy, and millions of pixels. Incoherent pump light from a control projector tunes each PhC cavity via the free-carrier dispersion effect, thereby modulating the coherent probe field emitted from the cavity array. The use of high-Q/V semiconductor cavities enables energy-efficient all-optical control and eliminates the need for individual tuning elements, which degrade the performance and limit the size of the optical surface. Using this technique, an SLM with 106 pixels, micron-order pixel pitch, and GHz-order refresh rates could be realized with less than 1 W of pump power.

    Microcavity-Enhanced Optical Bolometer

    公开(公告)号:US20220236113A1

    公开(公告)日:2022-07-28

    申请号:US17335017

    申请日:2021-05-31

    Abstract: Optical microcavity resonance measurements can have readout noise matching the fundamental limit set by thermal fluctuations in the cavity. Small-heat-capacity, wavelength-scale microcavities can be used as bolometers that bypass the limitations of other bolometer technologies. The microcavities can be implemented as photonic crystal cavities or micro-disks that are thermally coupled to strong mid-IR or LWIR absorbers, such as pyrolytic carbon columns. Each microcavity and the associated absorber(s) rest on hollow pillars that extend from a substrate and thermally isolate the cavity and the absorber(s) from the rest of the bolometer. This ensures that thermal transfer to the absorbers is predominantly from radiation as opposed to from conduction. As the absorbers absorb thermal radiation, they shift the resonance wavelength of the cavity. The cavity transduces this thermal change into an optical signal by reflecting or scattering more (or less) near-infrared (NIR) probe light as a function of the resonance wavelength shift.

Patent Agency Ranking