Abstract:
In a payment-enabled smartphone, a customer verification method (CVM) may be performed without prompting the user to provide any input. An outcome of the resulting passive CVM process may be an input to a risk based decision process performed by the smartphone, by a point of sale terminal and/or by an issuer of a payment card account accessed via the payment-enabled smartphone. The risk based decision process may determine whether a payment transaction is approved or declined.
Abstract:
In a payment-enabled smartphone, a customer verification method (CVM) may be performed without prompting the user to provide any input. An outcome of the resulting passive CVM process may be an input to a risk based decision process performed by the smartphone, by a point of sale terminal and/or by an issuer of a payment card account accessed via the payment-enabled smartphone. The risk based decision process may determine whether a payment transaction is approved or declined.
Abstract:
In a payment-enabled smartphone, a customer verification method (CVM) may be performed without prompting the user to provide any input. An outcome of the resulting passive CVM process may be an input to a risk based decision process performed by the smartphone, by a point of sale terminal and/or by an issuer of a payment card account accessed via the payment-enabled smartphone. The risk based decision process may determine whether a payment transaction is approved or declined.
Abstract:
A mobile device includes a housing and an antenna. The mobile device further includes a power-receiving circuit, and power-transmitting circuit, and a short-range communications circuit. The antenna performs multiple functions in that it is shared by the power-receiving circuit, the power-transmitting circuit and the short-range communications circuit. Each of the three circuits is selectively connectable to the antenna. The mobile device is configured to participate in a mobile-to-mobile battery-charge-sharing operation via inductive coupling from mobile device to mobile device.
Abstract:
A method includes receiving a request for a response, where the request has a defined response deadline. The method further includes determining whether optimal response information is available prior to the defined response deadline. Based on a result of such determination, non-optimal information is sent prior to the defined response deadline in response to the request. Thereafter, the optimal response information is sent asynchronously.
Abstract:
A method includes receiving a purchase order via a telephone call from a customer. As part of the phone call, a credentials service customer identifier assigned to the customer is received from the customer. The method further includes transmitting a message to a credentials service that issued the customer identifier. Payment credentials are received from the credentials service. The payment credentials include a payment token that is associated with a payment account that belongs to the customer. The method further includes generating a payment account system authorization request message. The authorization request message includes the payment token. In addition, the method includes transmitting the authorization request message for routing to an issuer of the payment account.
Abstract:
A mobile device includes a housing and an antenna. The mobile device further includes a power-receiving circuit, and power-transmitting circuit, and a short-range communications circuit. The antenna performs multiple functions in that it is shared by the power-receiving circuit, the power-transmitting circuit and the short-range communications circuit. Each of the three circuits is selectively connectable to the antenna. The mobile device is configured to participate in a mobile-to-mobile battery-charge-sharing operation via inductive coupling from mobile device to mobile device.
Abstract:
A method includes receiving a purchase order via a telephone call from a customer. As part of the phone call, a credentials service customer identifier assigned to the customer is received from the customer. The method further includes transmitting a message to a credentials service that issued the customer identifier. Payment credentials are received from the credentials service. The payment credentials include a payment token that is associated with a payment account that belongs to the customer. The method further includes generating a payment account system authorization request message. The authorization request message includes the payment token. In addition, the method includes transmitting the authorization request message for routing to an issuer of the payment account.
Abstract:
In a payment-enabled smartphone, a customer verification method (CVM) may be performed without prompting the user to provide any input. An outcome of the resulting passive CVM process may be an input to a risk based decision process performed by the smartphone, by a point of sale terminal and/or by an issuer of a payment card account accessed via the payment-enabled smartphone. The risk based decision process may determine whether a payment transaction is approved or declined.
Abstract:
In a payment-enabled smartphone, a customer verification method (CVM) may be performed without prompting the user to provide any input. An outcome of the resulting passive CVM process may be an input to a risk based decision process performed by the smartphone, by a point of sale terminal and/or by an issuer of a payment card account accessed via the payment-enabled smartphone. The risk based decision process may determine whether a payment transaction is approved or declined.