摘要:
The present invention relates to an improved procedure for synchronization of re-configuration of RRC procedures between the radio base station and the UE. This is achieved by associating a new configuration to be used by a UE with an additional UE identity. The UE is normally identified by a first UE identity, but is informed in a re-configuration message that the UE also has the additional UE identity. The UE is identified by the additional UE identity when the new configuration is to be activated. Hence, when the radio base station detects that the UE responds to requests, which included the additional UE identity, the radio base station can conclude that the UE has activated the new configuration.
摘要:
The present invention relates to an improved procedure for synchronization of re-configuration of RRC procedures between the radio base station and the UE. This is achieved by associating a new configuration to be used by a UE with an additional UE identity. The UE is normally identified by a first UE identity, but is informed in a re-configuration message that the UE also has the additional UE identity. The UE is identified by the additional UE identity when the new configuration is to be activated. Hence, when the radio base station detects that the UE responds to requests, which included the additional UE identity, the radio base station can conclude that the UE has activated the new configuration.
摘要:
The present invention relates to a method and apparatus for requesting scheduling of resources to be used for uplink communication of data in a communications system. If the repeated transmission by a user equipment of scheduling requests on an uplink control channel is determined to be unsuccessful, a random access transmission on a random access channel is initiated as a fallback procedure.
摘要:
The present invention relates to a method and apparatus for requesting scheduling of resources to be used for uplink communication of data in a communications system. If the repeated transmission by a user equipment of scheduling requests on an uplink control channel is determined to be unsuccessful, a random access transmission on a random access channel is initiated as a fallback procedure.
摘要:
In a wireless communication network where base stations receive protocol data units (PDUs) from mobile stations for decompression and deciphering for ordered, sequential transfer as service data units (SDUs) to an associated core network, the teachings presented herein provide a method of supporting seamless handover of a mobile station from a source base station to a target base station. By way of example, the teachings herein apply to a network based on the E-UTRA specifications, as promulgated by the 3GPP. However, that example is non-limiting, as the teachings herein apply to any network that employs in-sequence data delivery and duplicate data detection at handover. Broadly, the source base station forwards out-of-sequence SDUs and corresponding sequence number information to the target base station in support of seamless handover, and the target base station uses that information to request retransmissions as needed for packet reordering.
摘要:
The teachings presented herein enable a user terminal to perform a fast recovery from a radio link failure. In one aspect, the improvement in recovery time is achieved by commanding or otherwise causing the user terminal to perform radio link failure (RLF) recovery at a cell that is known to possess the user context, while considering that this cell should yield good radio conditions (if not the best) to the user terminal. A cell may be predefined for use by the user terminal in recovering its radio connection. Based on providing signal strength thresholds to the user terminal, for use in determining whether to use a predefined cell for reconnecting to the network, the user terminal attempts RLF recovery first in the predefined cell. By providing user context to the predefined cell in advance of a recovery attempt by the user terminal, the time for recovery is lessened. Note that the user terminal also may infer which cells are preferred.
摘要:
The teachings presented herein enable a user terminal to perform a fast recovery from a radio link failure. In one aspect, the improvement in recovery time is achieved by commanding or otherwise causing the user terminal to perform radio link failure (RLF) recovery at a cell that is known to possess the user context, while considering that this cell should yield good radio conditions (if not the best) to the user terminal. A cell may be predefined for use by the user terminal in recovering its radio connection. Based on providing signal strength thresholds to the user terminal, for use in determining whether to use a predefined cell for reconnecting to the network, the user terminal attempts RLF recovery first in the predefined cell. By providing user context to the predefined cell in advance of a recovery attempt by the user terminal, the time for recovery is lessened. Note that the user terminal also may infer which cells are preferred.
摘要:
A system, method and node of downlinking transmissions to an unsynchronized UE in a telecommunications network. The method begins by a node in the network requesting synchronization of the UE with the network. A first transmission of data is sent from the node to the UE prior to synchronization of the UE. The UE then synchronizes with the network by the UE performing a Random Access procedure with the node, thereby triggering a time alignment command from the node to the UE to synchronize the UE with the network. A second transmission of data is then sent from the node to the UE after the UE is synchronized. A response feedback message is sent to the node from the UE. The message is a cumulative feedback message of the first transmission of data and the second transmission of data. Thus, data may be transmitted prior to synchronization of the UE.
摘要:
A system, method and node of downlinking transmissions to an unsynchronized UE in a telecommunications network. The method begins by a node in the network requesting synchronization of the UE with the network. A first transmission of data is sent from the node to the UE prior to synchronization of the UE. The UE then synchronizes with the network by the UE performing a Random Access procedure with the node, thereby triggering a time alignment command from the node to the UE to synchronize the UE with the network. A second transmission of data is then sent from the node to the UE after the UE is synchronized. A response feedback message is sent to the node from the UE. The message is a cumulative feedback message of the first transmission of data and the second transmission of data. Thus, data may be transmitted prior to synchronization of the UE.
摘要:
Techniques for controlling synchronous HARQ retransmissions are disclosed, in which non-adaptive retransmissions scheduled for a first transmission time interval are automatically deferred to a later transmission time interval in the event that a control message prohibiting the retransmission during the first transmission interval is received. In an exemplary method, a NACK message is received (320) in response to a previous data transmission corresponding to a stop-and-wait HARQ process, and a synchronous HARQ retransmission is scheduled (330) for a first transmission interval in response. A control message indicating that data for the stop- and-wait HARQ process may not be sent during the first transmission interval is received, and the synchronous HARQ retransmission is automatically deferred (350) to a second transmission interval, responsive to the control message. An explicit grant is not required to trigger the retransmission during the second transmission interval.