摘要:
An optically based location system and method of determining a location at a structure include a lighting infrastructure having lights at a structure. Each light is configured to illuminate and to transmit a respective relative or absolute terrestrial position through modulation of emitted light. An optical receiver is configured to detect the lights, to demodulate the position of detected lights, and to determine from the detection a position of the receiver. The receiver can have a conventional optical detector for determining a two-dimensional position of the receiver relative to a detected light, or can have a three-dimensional spot collimating lens and charged couple device optical detector for determining a three-dimensional position of the receiver relative to a detected light. The receiver and lights can be synchronized for converting a delay time into a distance measurement to calculate a distance between a light and the receiver.
摘要:
A device for detecting the direction of a light source. The device has a pin-hole lens that allows a collimated light beam to excite a light sensing surface behind the lens. The output from the light sensing surface is passed to a processor that determines the position of the surface that has been excited and the direction of the light source. When the position of one or more light sources is known, the device may further determine its own position. The devices may be used in a location system to provide known reference points to a network of other devices. The light sources may be modulated, in which the device can select or identify a particular light source based upon its modulation pattern.
摘要:
A novel noise injection technique is presented to improve dynamic range with low resolution and low speed analog to digital converters. This technique combines incoming signal and noise signal with wave front de-multiplexer and split into several channels. Then low resolution and low speed analog to digital converters are used to sample each channels. All signals are recovered using wave front multiplexer. For advanced design, ground diagnostic signals with optimizing processor can be added to guarantee recovery quality.
摘要:
Presented are methods that utilize wavefront multiplexing for enabling linearly-polarized terminals to access circularly-polarized satellite transponders. The methods disclosed herein feature (1) polarization formation capability that renders transmitted signal conditioned on circularly-polarized channels through multiple linearly-polarized feeds, and (2) polarization-conversion capability that compensate path differentials introduced by electromagnetic wave propagation channels. Data streams to be transmitted are pre-processed by a wavefront multiplexer into multiple wavefront components in linear polarization formats, where signals from respective data streams are replicated into linearly-polarized sub-channels. These replicated data streams are linked via a unique complex weighting vector (amplitude and phase or their equivalents), or “wavefront”, which are also linked by various spatially independent wavefronts. Additionally, a probing signal is sent on the transmitting side and linked via some of the independent wavefronts. Aggregated signals in linearly-polarized sub-channels are unique linear combinations of all input data streams. Aggregated signals in turn appear in circularly-polarized formats and propagate through circularly-polarized channels including circularly-polarized satellite transponders and a circularly-polarized teleport on the receiving side. Correlation between the circularly-polarized signal and the probing signal is sent back to the transmitting side that drives the polarization-conversion function toward the optimal state such that this correlation is lower than a pre-defined level. Accordingly, an optimally configured satellite communication system either (1) enables the linearly-polarized terminal on the transmitting side to access right-hand circularly-polarized satellite transponder without interfering the left-hand circularly-polarized satellite transponder, or (2) enables the linearly-polarized terminal on the transmitting side to access left-hand circularly-polarized satellite transponder without interfering the right-hand circularly-polarized satellite transponder.
摘要:
A novel noise injection technique is presented to improve dynamic range with low resolution and low speed analog to digital converters. This technique combines incoming signal and noise signal with wave front de-multiplexer and split into several channels. Then low resolution and low speed analog to digital converters are used to sample each channels. All signals are recovered using wave front multiplexer. For advanced design, ground diagnostic signals with optimizing processor can be added to guarantee recovery quality.
摘要:
Presented are methods that utilize wavefront multiplexing for enabling linearly-polarized terminals to access circularly-polarized satellite transponders. The methods disclosed herein feature (1) polarization formation capability that renders transmitted signal conditioned on circularly-polarized channels through multiple linearly-polarized feeds, and (2) polarization-conversion capability that compensate path differentials introduced by electromagnetic wave propagation channels. Data streams to be transmitted are pre-processed by a wavefront multiplexer into multiple wavefront components in linear polarization formats, where signals from respective data streams are replicated into linearly-polarized sub-channels. These replicated data streams are linked via a unique complex weighting vector (amplitude and phase or their equivalents), or “wavefront”, which are also linked by various spatially independent wavefronts. Additionally, a probing signal is sent on the transmitting side and linked via some of the independent wavefronts. Aggregated signals in linearly-polarized sub-channels are unique linear combinations of all input data streams. Aggregated signals in turn appear in circularly-polarized formats and propagate through circularly-polarized channels including circularly-polarized satellite transponders and a circularly-polarized teleport on the receiving side. Correlation between the circularly-polarized signal and the probing signal is sent back to the transmitting side that drives the polarization-conversion function toward the optimal state such that this correlation is lower than a pre-defined level. Accordingly, an optimally configured satellite communication system either (1) enables the linearly-polarized terminal on the transmitting side to access right-hand circularly-polarized satellite transponder without interfering the left-hand circularly-polarized satellite transponder, or (2) enables the linearly-polarized terminal on the transmitting side to access left-hand circularly-polarized satellite transponder without interfering the right-hand circularly-polarized satellite transponder.