摘要:
A magnetic deflection system for a high-power electron beam with an expanding cross-section area is used for melting or vaporizing metallic materials. Saddle coils are provided which open in a direction of expansion of the electron beam. With the aid of these saddle coils large deflection speeds of the electron beam are obtained with small imaging errors and large deflection angles.
摘要:
An inductor is provided for the simultaneous inductive heating of two tracks or ways which are formed next to one another on a metallic workpiece, having a first segment which is associated with the first track or way and a second segment which is associated with the second track or way, and having two supply arms via which the segments can be connected to a power supply. To enable two tracks or ways to be heated simultaneously to the hardening temperature without heating the material portion situated between the tracks or ways the segments of the inductor and the supply arms are connected together in an inductor in such a way that the fields travelling at right angles to the longitudinal extent of the tracks or ways neutralize each other in the region of the material portion which separates the tracks or ways from one another.
摘要:
To produce precision castings from a melt, use is made of a metallic casting wheel (1) which has an annular distribution channel (4) and a plurality of interchangeable casting moulds (6), each having at least one filling opening (6a). The melt quantity per casting operation is chosen here such that the casting moulds (6) and the distribution channel (4) are filled with the melt upon the rotation of the casting wheel (1) about its axis (A—A), in such a way that after the solidification of the melt the precision castings are held together by a ring of the casting material which is formed in the distribution channel (4), the so-called circulating material for new casting processes, and are removed from the casting wheel (1) together with the casting moulds (6), whereupon the precision castings are separated from the ring. In order to be able to produce precision castings with complicated three-dimensional shapes, in particular with undercuts, by this means as well, the casting moulds (6), which can be used only once and are destructible for the purpose of demoulding, are selected from a ceramic material and are attached in a positive-locking and interchangeable manner to the casting wheel (1) and so as to protrude therefrom. As a result, the circulating material can be fed uncontaminated to a recycling process.
摘要:
In a process for the production of alloys from at least two alloy components (A, B, C, D, . . . ) with different melting points by melting in an inductively heated cold-walled crucible (1) with a cooled crucible base (3), in order to obtain an exact and homogeneous alloy composition at least a part of the alloy components (A, B, C, D, . . . ) are introduced into the cold-walled crucible (1) consecutively and in stacked fashion where either a) the alloy component (a) in each case with the lower melting point is introduced first or b) the alloy component in each case with the lower density is introduced first and following the introduction at least one of further alloy component the heating energy is switched on. The process serves preferably for the production of the intermetallic phase TiAl, where firstly the aluminium and then the titanium are stacked in the cold-walled crucible (1).
摘要:
A teeming spout has on its inside a plurality of picket-like metal segments (1) separated from one another by slots (2) and is externally surrounded by an induction coil (3). The bottom turn (7) of this induction coil (3) has a downwardly directed pitch equalization piece (8) which provides such that the field acts uniformly on the teeming stream from all sides and therefore it is not deflected.
摘要:
The invention relates to a method of producing metallic and intermetallic alloy ingots by continuous or quasi-continuous billet withdrawal from a cold wall crucible, which is characterized in that the alloy material is continuously or quasi-continuously supplied in a molten and pre-homogenized state to a cold wall induction crucible.
摘要:
A crucible (10) for the inductive melting or superheating of metals, alloys, or other electrically conductive materials is provided with palisades of approximately equal length, arranged vertically, parallel to, and a certain distance away from, each other around a circle so as to surround the melt. A plate-shaped or ring-shaped part (4) at the bottom ends of the palisades (3, 3', . . . ) holds the palisades (3, 3', . . . ). At least part of the palisades (3, 3', . . . ) are provided with cavities (5, 5', . . . ) or channels, through which a coolant flows. An induction coil (6), through which an alternating current flows surrounds the palisades (3, 3', . . . ) spaced from their outside surfaces. The palisades (3, 3', . . . ) have slots (7a, 7b, 7c;, 7a', 7b', 7c', . . . ), which extend vertically from the palisade-holding part (4) up to a point near the top edge. The inside wall (9, 9', 9", . . . ) formed by all the palisades together circumscribes a straight, regular prism with sides in the form of identical parallelograms and congruent top and bottom surfaces.
摘要:
In the production of castings from a melt of a reactive metal selected from the group consisting of titanium, titanium alloys, and titanium-based alloys, a reusable casting mold (20) is used; the mold, at least in the area of the surface which comes in contact with the melt, consists of at least one metal selected from the group consisting of tantalum, niobium, zirconium, and/or their alloys. The casting mold (20) preferably consists, at least in the area of the surface which comes in contact with the melt, of a tantalum based alloy containing at least 50 wt. % of tantalum. The casting molds can be made of a homogeneous metal, but it is also possible to insert shells of the metals in question into a base body to form the boundaries of the mold cavities, whereas the base body itself consists of some other metal or alloy or of a nonmetal such as graphite or silicon nitride. Insofar as the casting molds in question are molds for centrifugal casting, it is preferable to use titanium, a titanium alloy, or titanium aluminide as the nonmetal for the base body.
摘要:
In the production of precision castings by centrifugal casting with controlled solidification, a melt is cast under vacuum or shield gas into a pre-heated mold (15) with a central gate (19) and several mold cavities proceeding from the gate toward the outer circumference (Da) of the mold (15). To prevent the formation of shrinkholes and porous areas in the castings, to save energy, and to increase the production rate, the mold (15) is operated at temperatures which decrease from the inside toward the outside. The mold consists of a material or material combination with a coefficient of thermal conductivity lower than that of copper. Before the melt is poured, the mold (15) is heated, starting from the gate (19), by a heating device (20), which projects into the gate, so that the gate (19) reaches a temperature which is a function of the material being cast. Heating is carried out at a rate sufficient to produce a temperature Gradient of at least 100° C., preferably of 200-600° C., even more preferably of 300-500° C., between the inside circumference (Di) and the outside circumference (Da). The invention is used preferable for the production of precision castings of metals of the group titanium, titanium alloys with at least 40 wt. % of the titanium, and superalloys.
摘要:
In the production of precision castings by centrifugal casting with controlled solidification, a melt is cast under vacuum or shield gas into a pre-heated mold (15) with a central gate (19) and several mold cavities proceeding from the gate toward the outer circumference (Da) of the mold (15). To prevent the formation of shrinkholes and porous areas in the castings, to save energy, and to increase the production rate, the mold (15) is operated at temperatures which decrease from the inside toward the outside. The mold consists of a material or material combination with a coefficient of thermal conductivity lower than that of copper. Before the melt is poured, the mold (15) is heated, starting from the gate (19), by a heating device (20), which projects into the gate, so that the gate (19) reaches a temperature which is a function of the material being cast. Heating is carried out at a rate sufficient to produce a temperature gradient of at least 100° C., preferably of 200-600° C., even more preferably of 300-500° C., between the inside circumference (Di) and the outside circumference (Da). The invention is used preferably for the production of precision castings of metals of the group titanium, titanium alloys with at least 40 wt. % of the titanium, and superalloys.