Abstract:
An electrode system configured to be positioned within a vacuum chamber of an electron-beam metal evaporation and deposition apparatus including a metal slug from which metal is evaporated during operation of the electron-beam metal evaporation and deposition apparatus. The electrode system includes a substantially ring-shaped electrode formed of a conductive material and a plurality of insulating standoffs configured to support the substantially ring-shaped electrode in the vacuum chamber in a position substantially surrounding the metal slug.
Abstract:
An apparatus for suppression of arcs in an electron beam generator including: a first module providing an operating voltage; a second module including a coil suitable for a voltage of at least 10 kV, and at least one free-wheeling diode connected in parallel to the coil; a third module including a first circuit component configured to detect a first actual value for electric voltage, and a first signal is producible when the first actual value falls below a first threshold value, a second circuit component by which a second actual value for electric current is detectable, and a second signal is generated when the second actual value exceeds a second threshold value, a control logic, which optionally links the first and second signals and a resultant output signal is producible; a semiconductor-based switch suitable for the voltage of at least 10 kV, which is opened based on the output signal.
Abstract:
An electrode system configured to be positioned within a vacuum chamber of an electron-beam metal evaporation and deposition apparatus including a metal slug from which metal is evaporated during operation of the electron-beam metal evaporation and deposition apparatus. The electrode system includes a substantially ring-shaped electrode formed of a conductive material and a plurality of insulating standoffs configured to support the substantially ring-shaped electrode in the vacuum chamber in a position substantially surrounding the metal slug.
Abstract:
Disclosed herein are systems and methods for in-situ measurement of impurities on metal slugs utilized in electron-beam metal evaporation/deposition systems, and for increasing the production yield of a semiconductor manufacturing processes utilizing electron-beam metal evaporation/deposition systems. A voltage and/or a current level on an electrode disposed in a deposition chamber of an electron-beam metal evaporation/deposition system is monitored and used to measure contamination of the metal slug. Should the voltage or current reach a certain level, to the deposition is completed and the system is inspected for contamination.
Abstract:
An apparatus for coating substrates with a coating material is disclosed. The apparatus includes a frame, a crucible arrangement including a first crucible and a second crucible disposed offset from one another in a horizontal plane, where the crucible arrangement is disposed on the frame. At least one first shaft is associated with the first crucible and at least one second shaft is associated with the second crucible, where the at least one first and second shafts are disposed in the frame beneath the first and second crucibles, respectively. A first lifting device is associated with the at least one first shaft and a second lifting device is associated with the at least one second shaft, where the first and second lifting devices are disposed in the frame. The frame is linearly displaceable in the horizontal plane.
Abstract:
An electron beam vapor deposition apparatus includes a coating chamber including a coating zone for depositing a coating on a work piece. A coating device includes at least one crucible for presenting at least one source coating material. The coating device includes a first deposition mode of depositing the at least one source coating material and a second deposition mode of depositing the at least one source coating material. At least one electron beam source evaporates the at least one source coating material for deposit onto the work piece. A controller is configured to control a speed of movement of the work piece in the coating zone during the coating operation in response to the first deposition mode and the second deposition mode.
Abstract:
An electron beam gun with an arched shaped beam former as an integral part of a massive cathode block which conducts heat away from the beam former and with a filament mounted to the cathode block for improved alignment.
Abstract:
An electron beam gun with an arched shaped beam former as an integral part of a massive cathode block which conducts heat away from the beam former and with a filament mounted to the cathode block for improved alignment.
Abstract:
An electron beam physical vapor deposition (EBPVD) apparatus and a method for using the apparatus to produce a coating material (e.g., a ceramic thermal barrier coating) on an article. The EBPVD apparatus generally includes a coating chamber that is operable at elevated temperatures and subatmospheric pressures. An electron beam gun projects an electron beam into the coating chamber and onto a coating material within the chamber, causing the coating material to melt and evaporate. An article is supported within the coating chamber so that vapors of the coating material deposit on the article. The operation of the EBPVD apparatus is enhanced by the shape and intensity of the electron beam pattern on the coating material and on a crucible containing the molten coating material.
Abstract:
A vacuum evaporator is characterized in that hot-cathode filaments (7) are provided as the electron source around a tip of a rod evaporation material (4); the peripheries of the rod evaporation material (4) and the hot-cathode filaments (7) are disposed in parallel to a conductive cooling member (1) of a good heat conductive metal which is partly contacted with the atmosphere to decrease the dissipation of radiation heat produced from the hot-cathode filaments (7) and a tip (41) of the rod evaporation material (4) into a vacuum vessel a; heat absorbed by the conductive cooling member (1) is quickly conducted through the conductive cooling member and discharged to the atmosphere to prevent the temperature of the electron impact heating part from increasing and to prevent the increase of the gas discharge due to the heat dissipation from the electron impact heating part.