Abstract:
A memory module, comprising: a first pin, arranged to receive a first signal; a second pin, arranged to receive a second signal; a first conducting path, having a first end coupled to the first pin; at least one memory chip, coupled to the first conducting path for receiving the first signal; a predetermined resistor, having a first terminal coupled to a second end of the first conducting path; and a second conducting path, having a first end coupled to second pin for conducting the second to a second terminal of the predetermined resistor; wherein the first signal and the second are synchronous and configured to be a differential signal, for enabling a selected memory chip from the at least one memory chip to be accessed.
Abstract:
A memory module, comprising: a first pin, arranged to receive a first signal; a second pin, arranged to receive second signal; a first conducting path, having a first end coupled to the first pin; at least one memory chip, coupled to the first conducting path for receiving the first signal; a predetermined resistor, having a first terminal coupled to a second end of the first conducting path; and a second conducting path, having a first end coupled to second pin for conducting the second to a second terminal of the predetermined resistor; wherein the first signal and the second are synchronous and configured to be a differential signal, for enabling a selected memory chip from the at least one memory chip to be accessed.
Abstract:
An active output buffer controller is used for controlling a packet data output of a main buffer in a network device. The active output buffer controller has a credit evaluation circuit and a control logic. The credit evaluation circuit estimates a credit value based on at least one of an ingress data reception status of the network device and an egress data transmission status of the network device. The control logic compares the credit value with a first predetermined threshold value to generate a comparison result, and controls the packet data output of the main buffer according to at least the comparison result.
Abstract:
A clock tree circuit Including a first clock source, generating a first signal, and a first tree circuit. The first clock tree circuit includes a first driving stage for receiving the first signal, a second driving stage, connected to the first driving stage, a third driving stage, connected to the second driving stage, and a metal connection element, coupled between different nodes of the third driving stage and configured as a short-circuited element.
Abstract:
A clock tree circuit includes a clock source and a tree circuit. The clock source generates a signal. The tree circuit at least includes five driving units and a metal connection element. A first driving unit has an input terminal for receiving the signal, and an output terminal coupled to a first node. A second driving unit has an input terminal coupled to the first node, and an output terminal coupled to a second node. A third driving unit has an input terminal coupled to the first node, and an output terminal coupled to a third node. A fourth driving unit has an input terminal coupled to the second node. A fifth driving unit has an input terminal coupled to the third node. The metal connection element is coupled between the second node and the third node, and configured as a short-circuited element.