Abstract:
A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.
Abstract:
A shield located within an implantable medical lead may be terminated in various ways. The shield may be terminated by butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. For lap joints, a portion of an outer insulation layer may be removed and a replacement outer insulation layer is positioned in place of the removed outer insulation layer, where the replacement layer extends beyond an inner insulation layer and the shield. The replacement layer may also lap onto a portion of the insulation extension. Barbs may be located between the replacement layer and the inner insulation layer or the insulation extension. The shield wires have ends at the termination point that may be folded over individually or may be capped with a ring located within one of the insulation layers of the jacket.
Abstract:
Tools and methods for removing anchors from medical leads involve a guide portion and a blade. The lead is inserted within a lead passageway of the guide portion of the tool and the tool is moved along so that the blade contacts the anchor and cuts a slit in the anchor as the tool. Once the blade has cut the slit through the entire anchor, the anchor comes free of the lead and the tool can be removed. The tool may include a manner of opening and closing the guide portion so as to provide access to the lead when open and to contain the lead when closed. Opening the guide portion allows the lead to be inserted or removed by laterally moving the lead into or out of the lead passageway such that the tool may be installed or removed at any available point along the lead.
Abstract:
A shield located within an implantable medical lead may be terminated in various ways. The shield may be terminated by butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. For lap joints, a portion of an outer insulation layer may be removed and a replacement outer insulation layer is positioned in place of the removed outer insulation layer, where the replacement layer extends beyond an inner insulation layer and the shield. The replacement layer may also lap onto a portion of the insulation extension. Barbs may be located between the replacement layer and the inner insulation layer or the insulation extension. The shield wires have ends at the termination point that may be folded over individually or may be capped with a ring located within one of the insulation layers of the jacket.
Abstract:
Implantable medical leads and implantable lead extensions include a shield. The implantable medical lead is coupled to the implantable lead extension. Stimulation electrodes of the implantable medical lead contact stimulation connectors within a housing of the implantable extension to establish a conductive pathway for stimulation signals from filars of the implantable extension to filars of the implantable medical lead. Continuity is established between the shield of the implantable medical lead and the implantable extension by providing a radio frequency conductive pathway within the housing. The radio frequency conductive pathway extends from a shield of the implantable extension to a shield connector that contacts a shield electrode of the implantable medical lead. The radio frequency conductive pathway may have various forms such as a jumper wire or an extension of the shield within the implantable extension.
Abstract:
A tool for deploying an anchor sleeve onto an implantable device includes handle and base members, which may be fitted together by an operator. The operator may select the handle member from a plurality thereof included in a kit; and the base member, also included in the kit, includes a rail segment with which a gripping portion of the selected handle member may be engaged, for example, via guidance from a marked portion of the base member. Once engaged, a deployment tip of the base member is located to move a mounted anchor sleeve from a tubular member of the handle member and onto a body of the device. The tubular member of some tools has a laterally offset distal end portion, on which the corresponding anchor sleeve is mounted; thus, kits including this type of handle member, may include a converter for the base member to facilitate engagement therewith.
Abstract:
An anchor deployment assembly includes an anchor receiving element having an elongate member defining a first opening, a second opening, and a lumen extending from the first opening to the second opening. The lumen is configured to slidably receive at least a portion of a therapy delivery element. The assembly further includes an anchor engagement element having a body defining a channel configured to slidably receive the elongate member of the anchor receiving element. The assembly further includes an alignment element securable relative to the elongate member of the anchor receiving element and configured to secure the elongate member relative to the body of the anchor engagement element to restrict movement of the elongate member orthogonal to a longitudinal axis of the channel of the body.
Abstract:
Medical leads included coiled filars that have longitudinally straight ends. The coiled filars may be coiled at a constant pitch until reaching the point where the filars become longitudinally straight. The coiled filars may reside within a central lumen of the lead body, while the longitudinally straight portions may reside in a region where electrical connectors are present and where filar passageways provide a pathway for the filars to exit the central lumen and bond with the electrical connectors. The coiled filars may be created with longitudinally straight ends using a body that includes longitudinally straight holes that receive the filars and maintain the longitudinally straight configuration while the remaining portion of the filars is being coiled.
Abstract:
An anchor deployment assembly includes an anchor receiving element having an elongate member defining a first opening, a second opening, and a lumen extending from the first opening to the second opening. The lumen is configured to slidably receive at least a portion of a therapy delivery element. The assembly further includes an anchor engagement element having a body defining (i) a face, and (ii) a channel extending along the body proximally from the face. The channel is configured to slidably receive the elongate member of the anchor receiving element. The face is configured to engage an anchor disposed about the elongate member of the anchor receiving element when the elongate member of the anchor receiving element is moved proximally relative to the face. The assembly further includes an alignment element securable relative to the elongate member of the anchor receiving element and configured to secure the elongate member relative to the body of the anchor engagement element to restrict movement of the elongate member orthogonal to a longitudinal axis of the channel of the body.
Abstract:
A shield located within an implantable medical lead may be terminated in various ways at a metal connector. The shield may be terminated by various joints including butt, scarf, lap, or other joints between insulation layers surrounding the lead and an insulation extension. The shield may terminate with a physical and electrical connection to a single metal connector. The shield may terminate with a physical and electrical connection by passing between an overlapping pair of inner and outer metal connectors. The metal connectors may include features such as teeth or threads that penetrate the insulation layers of the lead. The shield may terminate with a physical and electrical connection by exiting a jacket of a lead adjacent to a metal connector and lapping onto the metal connector.