Abstract:
In some examples, a medical device is configured to deliver high dose electrical stimulation therapy to a patient by at least generating and delivering an electrical stimulation signal having a relatively high duty cycle, and a stimulation intensity less than a perception or paresthesia threshold intensity level for the patient. The pulses may each have a relatively low amplitude, but due at least in part to a relatively high number of pulses per unit of time, the electrical stimulation signal may be high enough to elicit a therapeutic response from the patient. In some examples, the plurality of pulses may have a duty cycle in a range of about 5% to about 50%. Following the generation and delivery of the plurality of pulses, one or more recharge pulses for the plurality of pulses may be delivered.
Abstract:
In some examples, a method may include delivering an electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a first electrical stimulation pulse delivered to the patient via a first electrode and a second electrical stimulation pulse delivered to the patient via a second electrode, wherein the first electrical stimulation pulse and second electrical stimulation pulse are delivered as paired pulses with respect to each other and a combination of the first electrical stimulation pulse and the second electrical stimulation pulse evoke a compound action potential within the patient; sensing the compound action potential evoked by the combination of the first electrical stimulation pulse and the second electrical stimulation pulse; and adjusting one or more parameters of the electrical stimulation therapy based on the sensed compound action potential
Abstract:
In some examples, a medical device is configured to deliver high dose electrical stimulation therapy to a patient by at least generating and delivering an electrical stimulation signal having a relatively high duty cycle, and a stimulation intensity less than a perception or paresthesia threshold intensity level for the patient. The pulses may each have a relatively low amplitude, but due at least in part to a relatively high number of pulses per unit of time, the electrical stimulation signal may be high enough to elicit a therapeutic response from the patient. In some examples, the plurality of pulses may have a duty cycle in a range of about 5% to about 50%. Following the generation and delivery of the plurality of pulses, one or more recharge pulses for the plurality of pulses may be delivered.
Abstract:
In some examples, a medical device is configured to deliver sub-threshold electrical stimulation therapy to a patient at a stimulation intensity that is significantly less than a perception or paresthesia threshold intensity level for the patient. The medical device may determine the particular intensity level for the patient through a titration process. The medical device may titrate automatically or based upon the input of the patient, a clinician or a physician.
Abstract:
In some examples, a medical device is configured to deliver sub-threshold electrical stimulation therapy to a patient at a stimulation intensity that is significantly less than a perception or paresthesia threshold intensity level for the patient. The medical device may deliver the sub-threshold electrical stimulation therapy to a first anatomical location near a spine of a patient. The first anatomical location may be below a T9-10 spinal disc space in a lateral view of the patient or within 2 millimeters of a midline of the spine of the patient or both.
Abstract:
In some examples, a method may include delivering an electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a first electrical stimulation pulse delivered to the patient via a first electrode and a second electrical stimulation pulse delivered to the patient via a second electrode, wherein the first electrical stimulation pulse and second electrical stimulation pulse are delivered as paired pulses with respect to each other and a combination of the first electrical stimulation pulse and the second electrical stimulation pulse evoke a compound action potential within the patient; sensing the compound action potential evoked by the combination of the first electrical stimulation pulse and the second electrical stimulation pulse; and adjusting one or more parameters of the electrical stimulation therapy based on the sensed compound action potential.
Abstract:
In some examples, a medical device is configured to automatically determine a paresthesia threshold or a perception threshold of a patient in a second posture based on the paresthesia threshold or perception threshold of that patient in a first posture. The medical device may deliver an electrical stimulation signal to a patient and determine the paresthesia threshold or perception threshold for the patient in the first posture. The medical device may change the intensity of the electrical signal and receive an indication from the patient that they are experiencing paresthesia or perceiving the electrical stimulation signal. The medical device may then automatically determine a predicted paresthesia threshold or predicted perception threshold for a second posture based on the paresthesia threshold or perception threshold.
Abstract:
In some examples, a medical device is configured to deliver sub-threshold electrical stimulation therapy to a patient at a stimulation intensity that is significantly less than a perception or paresthesia threshold intensity level for the patient. The medical device may determine the particular intensity level for the patient through a titration process. The medical device may titrate automatically or based upon the input of the patient, a clinician or a physician.
Abstract:
In some examples, a medical device is configured to deliver high dose electrical stimulation therapy to a patient by at least generating and delivering an electrical stimulation signal having a relatively high duty cycle, and a stimulation intensity less than a perception or paresthesia threshold intensity level for the patient. The pulses of the electrical stimulation signal may each have a relatively low amplitude, but due at least in part to a relatively high number of pulses per unit of time, a dose of the electrical stimulation may be high enough to elicit a therapeutic response from the patient.
Abstract:
An introducer for a medical lead, the introducer having an arcuate component for creating an arcuate path in a patient. When used to percutaneously implant a medical device such as a medical lead with electrodes, the implanted lead has an arcuate configuration. The implanted lead can be used to at least partially encircle or bracket a region of chronic pain and provide therapeutic electrical signals to the region.