Abstract:
The disclosure describes a method and system that allows a user to configure electrical stimulation therapy by defining a three-dimensional (3D) stimulation field. After a stimulation lead is implanted in a patient, a clinician manipulates the 3D stimulation field in a 3D environment to encompass desired anatomical regions of the patient. In this manner, the clinician determines which anatomical regions to stimulate, and the system generates the necessary stimulation parameters. In some cases, a lead icon representing the implanted lead is displayed to show the clinician where the lead is relative to the 3D anatomical regions of the patient.
Abstract:
The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
Abstract:
A medical lead is provided for use in a pulse stimulation system of the type which includes a pulse generator for producing electrical stimulation therapy. The lead comprises an elongate insulating body and at least one electrical conductor within the insulating body. The conductor has a proximal end configured to he electrically coupled to the pulse generator and has a DC resistance in the range of 375-2000 ohms. At least one distal electrode is coupled to the conductor.
Abstract:
An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
Abstract:
A medical lead is provided for use in a pulse stimulation system of the type which includes a pulse generator for producing electrical stimulation therapy. The lead comprises an elongate insulating body and at least one electrical conductor within the insulating body. The conductor has a proximal end configured to be electrically coupled to the pulse generator and has a DC resistance in the range of 375-2000 ohms. At least one distal electrode is coupled to the conductor.
Abstract:
An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
Abstract:
The disclosure describes an implantable neurostimulator device for delivery of neurostimulation to treat head, neck, or facial pain or tension, including pain or tension caused by occipital neuralgia. The device may be a neurostimulation device having a miniaturized housing with a low profile that permits subcutaneous implantation at a stimulation site directly adjacent a neuralgic region at the back of the neck of a patient. For example, the device may be subcutaneously implanted at the back of the neck of a patient to relieve symptoms of occipital neuralgia.
Abstract:
A method of manufacturing an implantable medical device having reduced MRI image distortion, includes producing an implantable medical device. The implantable medical device has a configuration that comprises a housing and one or more internal components disposed within the housing. The configuration is based upon a design process that includes creating a first prototype, determining the aggregate relative magnetic permeability of the first prototype, and modifying the design of the first prototype by at least one of (a) selecting and adding a diamagnetic shimming material to the first prototype or (b) repositioning one or more internal components of the first prototype. Modifying the design results in a modified design that is the configuration for the implantable medical device.
Abstract:
A medical lead is configured to be implanted into a patient's body and comprises a lead body, and an electrode coupled to the lead body. The electrode comprises a first section configured to contact the patient's body, and a second section capacitively coupled to the first section and configured to be electrically coupled to the patient's body.
Abstract:
Delivery of peripheral nerve field stimulation (PNFS) in combination with one or more other therapies is described. The other therapy delivered in combination with PNFS may be, for example, a different type of neurostimulation, such as spinal cord stimulation (SCS), or a drug. PNFS and the other therapy may be delivered simultaneously, in an alternating fashion, according to a schedule, and/or selectively, e.g., in response to a request received from a patient or clinician. A combination therapy that includes PNFS may be able to more completely address complex or multifocal pain than would be possible through delivery of either PNFS or other therapies alone. Further, the combination of PNFS with one or more other therapies may reduce the likelihood that neural accommodation will impair the perceived effectiveness PNFS or the other therapies.