Abstract:
A tool for deploying an anchor sleeve onto an implantable device includes handle and base members, which may be fitted together by an operator. The operator may select the handle member from a plurality thereof included in a kit; and the base member, also included in the kit, includes a rail segment with which a gripping portion of the selected handle member may be engaged, for example, via guidance from a marked portion of the base member. Once engaged, a deployment tip of the base member is located to move a mounted anchor sleeve from a tubular member of the handle member and onto a body of the device. The tubular member of some tools has a laterally offset distal end portion, on which the corresponding anchor sleeve is mounted; thus, kits including this type of handle member, may include a converter for the base member to facilitate engagement therewith.
Abstract:
A tool for deploying an anchor sleeve onto an implantable device includes handle and base members, which may be fitted together by an operator. The operator may select the handle member from a plurality thereof included in a kit; and the base member, also included in the kit, includes a rail segment with which a gripping portion of the selected handle member may be engaged, for example, via guidance from a marked portion of the base member. Once engaged, a deployment tip of the base member is located to move a mounted anchor sleeve from a tubular member of the handle member and onto a body of the device. The tubular member of some tools has a laterally offset distal end portion, on which the corresponding anchor sleeve is mounted; thus, kits including this type of handle member, may include a converter for the base member to facilitate engagement therewith.
Abstract:
An anchor deployment assembly includes an anchor receiving element having an elongate member defining a first opening, a second opening, and a lumen extending from the first opening to the second opening. The lumen is configured to slidably receive at least a portion of a therapy delivery element. The assembly further includes an anchor engagement element having a body defining a channel configured to slidably receive the elongate member of the anchor receiving element. The assembly further includes an alignment element securable relative to the elongate member of the anchor receiving element and configured to secure the elongate member relative to the body of the anchor engagement element to restrict movement of the elongate member orthogonal to a longitudinal axis of the channel of the body.
Abstract:
An anchor deployment assembly includes an anchor receiving element having an elongate member defining a first opening, a second opening, and a lumen extending from the first opening to the second opening. The lumen is configured to slidably receive at least a portion of a therapy delivery element. The assembly further includes an anchor engagement element having a body defining (i) a face, and (ii) a channel extending along the body proximally from the face. The channel is configured to slidably receive the elongate member of the anchor receiving element. The face is configured to engage an anchor disposed about the elongate member of the anchor receiving element when the elongate member of the anchor receiving element is moved proximally relative to the face. The assembly further includes an alignment element securable relative to the elongate member of the anchor receiving element and configured to secure the elongate member relative to the body of the anchor engagement element to restrict movement of the elongate member orthogonal to a longitudinal axis of the channel of the body.
Abstract:
A medical device assembly includes a tunneler having a proximal end and a distal end and a carrier element fixed to the distal end of the tunneler. In various embodiments the carrier element is configured to be slidably disposed within a lead connection lumen. In various embodiments the carrier element includes a plurality of recesses configured to engage a lead extension set screw. In various embodiments the carrier element can freely rotate relative to the rest of the tunneler.
Abstract:
Methods and apparatus for anchoring an elongate medical device within a body portal, for example, a stimulation lead in a cranial burr hole, employ opposing engagement surfaces, spring biased toward one another. A retaining member may be inserted between the opposing surfaces, to hold the surfaces apart for initial positioning of the device therebetween. For example, a delivery catheter in which the device is moved through the body portal can serve as the retaining member. In one type of apparatus, the engagement surfaces are formed within an anchoring aperture of one plate member of a pair of plate members. In another type of apparatus, the engagement surfaces are formed by sides of a slot that extend through a ring member and into a plug member, wherein a portion of the plug member is preferably formed by an elastomer material, and, in some cases, an entirety of the apparatus.
Abstract:
A tool for deploying an anchor sleeve onto one or more implantable medical device bodies includes a holding element, on which the sleeve is mounted, and a base member having a channel, which receives the element in sliding engagement. A conduit of the holding element receives the one or more elongate bodies in sliding engagement. A deployment tip forms an opening of the channel, through which the holding element extends in sliding engagement, and which engages the mounted anchor sleeve for deployment thereof. The deployment tip may be provided as a separate component, wherein a distal segment of the base member is configured for attachment therewith; as such, the tip may be part of a deployment assembly that also includes the holding element. The deployment assembly may be selected from a plurality thereof included in a kit along with the base member.
Abstract:
An anchor deployment apparatus for deploying an anchor about a therapy delivery element, such as a lead or a catheter, includes an anchor receiving element having an elongate member defining a lumen. The lumen is configured to slidably receive at least a portion of the therapy delivery element. The anchor is disposable about the elongate member. The deployment apparatus further includes an anchor engagement apparatus having an anchor engagement feature and a channel in which the elongate member of the anchor receiving element is moveable. The engagement feature is configured to engage the anchor when the anchor is disposed about the elongate member, and to cause the anchor to move distally along the elongate member when the feature is engaged with the anchor and the elongate member is moved proximally relative to the engagement element.
Abstract:
A tool for deploying an anchor sleeve onto one or more implantable medical device bodies includes a holding element, on which the sleeve is mounted, and a base member having a channel, which receives the element in sliding engagement. A conduit of the holding element receives the one or more elongate bodies in sliding engagement. A deployment tip forms an opening of the channel, through which the holding element extends in sliding engagement, and which engages the mounted anchor sleeve for deployment thereof. The deployment tip may be provided as a separate component, wherein a distal segment of the base member is configured for attachment therewith; as such, the tip may be part of a deployment assembly that also includes the holding element. The deployment assembly may be selected from a plurality thereof included in a kit along with the base member.
Abstract:
Tips for use on a tunneling tool provide the ability to pull an implantable medical lead extension or catheter body through a subcutaneous tunnel. The tips may include a pin with a barb, where the barb is inserted within a compliant portion of a connector body of the lead extension or a catheter body to create an interference fit that allows the connector body or catheter body to be pulled through the tunnel. The tips may include a carrier that has a cavity for the connector body, where the tunneling is performed with the carrier present on the tunneling tool. A body is positioned within the cavity of the carrier to prevent tissue from snagging on and collecting within the carrier. The body may include a tip portion that performs the tunneling function. The carrier may also provide tunneling and/or may be attached to the tunneling tool during tunneling.