摘要:
A device implantable into a human or animal body comprising a biodegradable polymer which comprises ethylene carbonate units of the formula A -(—C(O)—O—CH2—CH2—O—)- A having an ethylene carbonate content of 70 to 100 Mol %, an intrinsic viscosity of 0.4 to 4.0 dl/g measured in chloroform at 20° C. at a concentration of 1 g/dl and a glass transition temperature of from 5 to 50° C., degradable by surface erosion which is governed by a non-hydrolytic mechanism.
摘要:
Microparticles comprising at least one active agent embedded within a biocompatible, biodegradable polymeric matrix, wherein said microparticles are prepared with an ionic liquid.
摘要:
A device implantable into a human or animal body comprising a biodegradable polymer which comprises ethylene carbonate units of the formula A —(—C(O)—O—CH2—CH2—O—)— A having an ethylene carbonate content of 70 to 100 Mol %, an intrinsic viscosity of 0.4 to 4.0 dl/g measured in chloroform at 20° C. at a concentration of 1 g/dl and a glass transition temperature of from 5 to 50° C., degradable by surface erosion which is governed by a non-hydrolytic mechanism.
摘要:
Microparticles comprising at least one active agent embedded within a biocompatible, biodegradable polymeric matrix, wherein said microparticles are prepared with an ionic liquid.
摘要:
The invention relates to composite materials comprising polymer nanofibers and polymer nanoparticles, wherein at least one of the two polymer materials is loaded with a substance selected from therapeutic and diagnostic agents. Fibers and nanoparticles can comprise identical or different polymers; the polymer materials are, however, biocompatible in every case. Therapeutic and diagnostic agents can be hydrophilic or lipophilic and the two polymer materials likewise. The at least one polymer material and the substance with which said material is loaded are either both hydrophilic or both lipophilic. The polymer nanoparticles of the composite materials have a diameter of 10 nm to 600 nm. The polymer fibers have diameters of 10 nm to 50 μm and lengths of 1 μm to several meters. The invention further relates to a method for producing said composite materials. Polymer nanoparticles can be produced in different ways, such as through controlled precipitation of a polymer solution that optionally comprises a loading substance. The nanoparticles are then mixed with another polymer and a loading substance as applicable, depending on whether particles, fibers or both are to be loaded with substance. The processing of this solution into composites comprising polymer fibers polymer nanoparticles can occur by means of electrospinning, melt spinning, extruding or template process. Composite materials according to the invention are suitable for the production of pharmaceuticals that release therapeutically or diagnostically effective substances slowly and in a controlled manner.
摘要:
The invention provides a polytartrate composition for pulsatile release of a pharmaceutically active material that is in the form of a compressed tablet, and a process for preparing such a composition.
摘要:
The present invention provides a pharmaceutical composition for the transdermal systemic administration of an active agent characterized in that the active agent is bopindolol or methysergide. Also the present invention provides a pharmaceutical composition for the transdermal systemic administration of a pharmacologically active agent characterized in that it contains bopindolol, tizanidine, clemastine, ketotifen or methysergide as active agent in a reservoir comprising a hydrophilic polymer. Furthermore a pharmaceutical composition for the transdermal systemic administration of pharmacologically active agents characterized in that the pharmacologically active agent is in a reservoir comprising a polyacrylate polymer containing cationic ester groups.
摘要:
The invention relates to new polyesters of a polyol containing substituents with electrolyte properties with polymeric hydroxycarboxylic esters, their method of preparation and their use. The polyesters are particularly suitable for use in the preparation of sustained-release drugs.
摘要:
The invention discloses microparticles comprising a polypeptide, preferably somatostatin or an analog or derivative thereof, more preferably octreotide, in a polymeric matrix, preferably poly(lactide-co-glycolide)glucose. The invention also discloses sustained release formulations containing said microparticles and the use of said formulations in treating acromegaly and breast cancer.
摘要:
The invention at hand provides hydrolytically degradable ionic copolymers. These ionic copolymerizates are composed of one cyclic ketene acetal A, one anionic or cationic methacrylic acid derivative B, selected from 2-methyl-methacrylate, [2-(2-methyl-1-methylene-allyloxy)]ethanesulfonate, [2-(2-methyl-1-methylene-allyloxy)ethyl]phosphonate or a quaternary amine of the N,N-dimethylaminoethylmethacrylic acid (DMAEMA) and, optionally, a neutral methacrylic acid derivative C.The hydrolytically degradable anionic copolymers according to the present invention are produced by polymerizing the components A, B and C in the presence of a radical initiator under inert gas atmosphere and subsequent purification.All copolymers according to the present invention are hydrolytically degradable. Copolymers comprising a maximum of 40 mol-% of ester groups in the backbone are additionally biodegradable, wherein in the case of cationic copolymers a maximum of 20 mol-% of quaternized DMAEMA is allowed to be available.Cationic copolymers comprising at least 50 mol-% of the component B are antimicrobial.Both anionic as well as cationic copolymers are suitable for producing nanoparticles. Cationic copolymers are suitable for being used as superhydrophobic materials as well as adhesives. Anionic copolymers are suitable for biodegradable thermoplastic elastomers and for biodegradable ionomers.