摘要:
An integrated electro-optic module may contain a continuous layer of electro-optic polymer through both a splitter portion and a modulator portion in order to facilitate high speed data transmission. The integrated electro-optic module may be fabricated by depositing a bottom cladding layer on a wafer, creating side cladding features, depositing the electro-optic polymer, and coating with a top cladding layer. The electro-optic polymer in both the splitter portion and modulator portion of the integrated electro-optic module may create inverted-ridge waveguide structures. The waveguide in the splitter portion may have a first ridge depth, and the waveguide in the modulator portion may have a second ridge depth, the first ridge depth greater than the second ridge depth.
摘要:
A method for creating an integrated linear polarizer is provided. An electro-optical component is fabricated and may include a bottom electrode, a bottom cladding layer, side cladding features, an electro-optic polymer layer, a top cladding layer, and a top electrode. After fabrication, the electro-optical component is poled to create or enhance polarization properties of the electro-optic polymer layer. The electro-optical component may be heated to at least a first threshold temperature. An electric field may then be applied to the electro-optical component. In the presence of the electric field, the electro-optical component may be cooled to at or below a second threshold temperature that is less than the first threshold temperature. Once the electro-optical component has cooled to the second threshold temperature, the electric field may be removed.
摘要:
A method for creating an integrated linear polarizer is provided. An electro-optical component is fabricated and may include a bottom electrode, a bottom cladding layer, side cladding features, an electro-optic polymer layer, a top cladding layer, and a top electrode. After fabrication, the electro-optical component is poled to create or enhance polarization properties of the electro-optic polymer layer. The electro-optical component may be heated to at least a first threshold temperature. An electric field may then be applied to the electro-optical component. In the presence of the electric field, the electro-optical component may be cooled to at or below a second threshold temperature that is less than the first threshold temperature. Once the electro-optical component has cooled to the second threshold temperature, the electric field may be removed.
摘要:
An optical modulator includes an input waveguide, a splitting point, a first interaction arm of length L1, a second interaction arm of length L2 that is unequal in length to the first interaction arm, a recombination point, and an output waveguide. The splitting point receives an incoming continuous wave light beam comprising two or more wavelengths of light from the input waveguide and splits it into a first light beam and a second light beam. The first interaction arm is coupled to the input waveguide and transports the first light beam. The second interaction arm is coupled to the input waveguide and transports the second light beam. The output waveguide is coupled to the first interaction arm and second interaction arm at the recombination point and combines the first light beam and second light beam into an output modulated light beam. The first interaction arm and the second interaction arm comprise an electro-optic material with a refractive index that changes according to a modulation stimulus. The electro-optic material has a first refractive index n1 before the modulation stimulus is applied, and a second refractive index n2 after the modulation stimulus is applied.
摘要:
An optical beam splitter includes an input waveguide, two or more branching arms, two or more fan-out arms, and two or more output waveguides. The input waveguide receives an input light beam. The two or more branching arms are coupled to the input waveguide at a separation point and split the input light beam at the separation point into two or more light beams. Each fan-out arm is coupled to one of the branching arms and fans-out one of the two or more light beams to a predetermined output pitch. Each output waveguide is coupled to one of the fan-out arms and transmits one of the two or more light beams out of the optical beam splitter.
摘要:
Disclosed are optical modulators that provide high-speed modulation capability and compact size. In exemplary modulator embodiments, the branch waveguide cores are formed in different processing layers than the input waveguide core, and light is coupled from an input waveguide core to two branch waveguide cores along diagonal directions. The construction enables the input waveguide core to be made of low-loss material compared to the electro-optic material of the branch waveguide cores. Also disclosed are interconnect apparatuses that can be used in processing systems. Exemplary interconnect apparatuses provide various configurations of components that enable high-speed modulation and compact size. The exemplary interconnect apparatuses may use the exemplary optical modulators disclosed herein.
摘要:
Disclosed are optical modulators that provide high-speed modulation capability and compact size. In exemplary modulator embodiments, the branch waveguide cores are formed in different processing layers than the input waveguide core, and light is coupled from an input waveguide core to two branch waveguide cores along diagonal directions. The construction enables the input waveguide core to be made of low-loss material compared to the electro-optic material of the branch waveguide cores. Also disclosed are interconnect apparatuses that can be used in processing systems. Exemplary interconnect apparatuses provide various configurations of components that enable high-speed modulation and compact size. The exemplary interconnect apparatuses may use the exemplary optical modulators disclosed herein.
摘要:
An optical interconnect system includes an integrated circuit, at least one optical modulator, and a slab waveguide. The optical modulator is coupled to the integrated circuit and receives an input light beam from a light source and data from a source device and generates a modulated output light beam. The slab waveguide is coupled to the optical modulator and includes at least one input waveguide microlens, a plurality of output waveguide microlenses, and at least one deflector prism. The input waveguide microlens focuses the modulated output light beam from the modulator into a collimated light beam. The deflector prism is coupled to the integrated circuit, receives the collimated light beam from the input waveguide microlens, and deflects the collimated light beam toward one of the output waveguide microlenses according to an input voltage.
摘要:
An optical beam splitter includes an input waveguide, two or more branching arms, two or more fan-out arms, and two or more output waveguides. The input waveguide receives an input light beam. The two or more branching arms are coupled to the input waveguide at a separation point and split the input light beam at the separation point into two or more light beams. Each fan-out arm is coupled to one of the branching arms and fans-out one of the two or more light beams to a predetermined output pitch. Each output waveguide is coupled to one of the fan-out arms and transmits one of the two or more light beams out of the optical beam splitter.
摘要:
An optical assembly is provided that includes a substrate. The substrate has a set of one or more optical waveguides. A component is coupled to and spaced apart from the substrate by at least one or more mechanical supports. The component has one or more photodetectors. A set of one or more flexible optical pillars is disposed to be positioned between the set of optical waveguides and the photodetectors. The set of flexible optical pillars is optically transmissive and configured to transmit light from the set of optical waveguides to the photodetectors.