Abstract:
An improved cell for a walk-off refractometer is disclosed that permits measurement of the differential refractive index, DRI, between a sample fluid and a reference fluid. In addition, the new cell design permits the measurement of the refractive index, RI, of a fluid relative to the refractive index of the material comprising or surrounding the flow cell. Thus a single instrument may be used to measure separately the RI of a sample fluid and the DRI between a sample fluid and a reference fluid. The new flow cell contains two chambers, typical of a DRI instrument, but an asymmetric internal angle in either the sample or the reference chamber. By the provision of this unique structure, it is an objective of this invention to be able to measure the refractive index of a fluid relative to the refractive index of the material comprising the flow cell or relative to the medium surrounding the flow cell, either of which may be considered a measurement of the RI of the fluid. With the addition of mirror means, it is the further objective of this invention to improve its sensitivity. A further objective of the invention is to measure the asymmetric internal angle of the flow cell using well-characterized reference fluids.
Abstract:
A lid for a multiwell plates which allows improved light scattering measurement of liquid samples within the wells of a multiwell plate, and which at the same time mitigates evaporation from said samples is disclosed. A surface element protrudes from the bottom of the lid into the fluid in a well. The protruding element may be hollow or solid, and the beam of light, directed into the element may act to capture or direct the beam while preventing backscatter from reaching the light scattering detector or detectors. The protruding element may thus direct the beam from the well without the beam having to pass through a fluid/air interface. The angle and shape of the lid surfaces may be optimized to minimize or eliminate back-reflection. Light absorbing and/or light blocking colorization may also be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
Abstract:
A lid for a multiwell plates which allows improved light scattering measurement of liquid samples within the wells of a multiwell plate, and which at the same time mitigates evaporation from said samples is disclosed. A surface element protrudes from the bottom of the lid into the fluid in a well. The protruding element may be hollow or solid, and the beam of light, directed into the element may act to capture or direct the beam while preventing backscatter from reaching the light scattering detector or detectors. The protruding element may thus direct the beam from the well without the beam having to pass through a fluid/air interface. The angle and shape of the lid surfaces may be optimized to minimize or eliminate back-reflection. Light absorbing and/or light blocking colorization may also be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
Abstract:
The present invention relates to Polysaccharide Size-Reduction Monitoring Methods useful for the non-invasive, and accurate monitoring of the progress of a polysaccharide size-reduction process.
Abstract:
A lid for multiwell plates, allowing improved optical measurement of liquid samples within its wells, while mitigating evaporation from said samples, is disclosed. A surface element protrudes from the bottom of the lid into the fluid within a well. The protruding element may be hollow or solid such that light directed into the element may act to capture or direct the beam while preventing backscatter from reaching one or more detectors. The protruding element may direct the beam from the well without requiring the beam to pass through a fluid/air interface. The angle and shape of the lid surfaces and/or light absorbing/blocking colorization may be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
Abstract:
This invention enables high throughput detection of small molecule effectors of particle association, as well as quantification of association constants, stoichiometry, and conformation. Given a set of particle solutions having different concentrations, dynamic light scattering measurements are used to determine the average hydrodynamic radius, as a function of concentration. The series of average hydrodynamic radii as a function of concentration are fitted with stoichiometric association models containing the parameters of molar mass, modeled concentrations, and modeled hydrodynamic radii of the associated complexes. In addition to the average hydrodynamic radii value analysis, the experimental data may be fit/analyzed in alternate ways. This method may be applied to a single species that is self-associating or to multiple species that are hetero-associating. This method may also be used to characterize and quantify the association between a modulator and the associating species.
Abstract:
An improved differential refractometer incorporating a photodetector array is disclosed. Using a multi-element photo array provides the basis for measurement of differential refractive index values with a heretofore unattainable combination of sensitivity of measurement and concurrent range of measurement. Within the large dynamic range attainable, the detector structure provides equal sensitivity irrespective of deflection within the range. The transmitted light beam is tailored to provide a spatial variation of the light intensity at the array improving thereby the precision of measurement of its displacement. This in turn results in improved precision in the reported differential refractive index and in the calculation of the differential refractive index increment dn/dc. Integrating the detector array into the flow cell structure of the parent case results in a detector of exceptional sensitivity and range for sample quantities far smaller than required by conventional differential refractometers.
Abstract:
This invention enables high throughput detection of small molecule effectors of particle association, as well as quantification of association constants, stoichiometry, and conformation. Given a set of particle solutions having different concentrations, dynamic light scattering measurements are used to determine the average hydrodynamic radius, as a function of concentration. The series of average hydrodynamic radii as a function of concentration are fitted with stoichiometric association models containing the parameters of molar mass, modeled concentrations, and modeled hydrodynamic radii of the associated complexes. In addition to the average hydrodynamic radii value analysis, the experimental data may be fit/analyzed in alternate ways. This method may be applied to a single species that is self-associating or to multiple species that are hetero-associating. This method may also be used to characterize and quantify the association between a modulator and the associating species.
Abstract:
A lid for multiwell plates, allowing improved optical measurement of liquid samples within its wells, while mitigating evaporation from said samples, is disclosed. A surface element protrudes from the bottom of the lid into the fluid within a well. The protruding element may be hollow or solid such that light directed into the element may act to capture or direct the beam while preventing backscatter from reaching one or more detectors. The protruding element may direct the beam from the well without requiring the beam to pass through a fluid/air interface. The angle and shape of the lid surfaces and/or light absorbing/blocking colorization may be employed to minimize or eliminate back reflection. Evaporation is controlled by physically capping the well with the lid, either sealing against the face at the top of the well or the inside surface of the well.
Abstract:
A sensitivity-enhanced flow cell to be used in the determination of the differential refractive index increment of a sample fluid relative to a reference fluid is disclosed. The invention permits the use of smaller sample amounts without sacrificing overall sensitivity. Equally important, said improved flow cell produces measurements of increased precision without requirement for increased sample amount. This is achieved by means of two chambers within said cell whose volumes are different. The sample fluid chamber is the smaller of the two with the reference fluid chamber constructed so that the incident illumination beam, upon passage through said sample chamber and displacement by the partition element located therebetween said sample and reference chambers, passes through said reference chamber without grazing any of the confining walls or striking corners of said sensitivity-enhanced flow cell. As the amount of deflection of said transmitted beam depends upon the refractive indices of the fluids relative to the transparent matter of which the containing cell is comprised, as well as the RI difference between said fluids themselves, the reference chamber is designed to transmit said incident light beam without grazing degradation thereof for all practical ranges of expected fluid and cell refractive indices.