摘要:
A beam steering apparatus includes a first beam steering stage and at least a second beam steering stage arranged in-line with the first beam steering stage. The first beam steering stage includes a first polarization grating comprising a uniaxial birefringent material having a first periodic director pattern, and the second beam steering stage includes a second polarization grating comprising a uniaxial birefringent material having a second periodic director pattern. In nonmechanical embodiments, a polarization selector may be arranged to provide a circularly polarized input beam incident on the first polarization grating. In mechanical embodiments, at least one of the first polarization grating and the second polarization grating may be operable to be independently rotated about an azimuth thereof. Related methods of operation are also discussed.
摘要:
A beam steering apparatus includes a first beam steering stage and at least a second beam steering stage arranged in-line with the first beam steering stage. The first beam steering stage includes a first polarization grating comprising a uniaxial birefringent material having a first periodic director pattern, and the second beam steering stage includes a second polarization grating comprising a uniaxial birefringent material having a second periodic director pattern. In nonmechanical embodiments, a polarization selector may be arranged to provide a circularly polarized input beam incident on the first polarization grating. In mechanical embodiments, at least one of the first polarization grating and the second polarization grating may be operable to be independently rotated about an azimuth thereof. Related methods of operation are also discussed.
摘要:
A liquid crystal device includes a first polarization grating (101), a second polarization grating (102), and a liquid crystal layer (103). The first polarization grating (101) is configured to polarize and diffract incident light (190) into first and second beams (195,196) having different polarizations and different directions of propagation relative to that of the incident light (190). The liquid crystal layer (103) is configured to receive the first and second beams (195,196) from the first polarization grating (101). The liquid crystal layer (103) is configured to be switched between a first state that does not substantially affect respective polarizations of the first and second beams (195,196) traveling therethrough, and a second state that alters the respective polarizations of the first and second beams (195,196) traveling therethrough. The second polarization grating (102) is configured to analyze and diffract the first and second beams (195,196) from the liquid crystal layer (103) to alter the different directions of propagation thereof in response to the state of the liquid crystal layer (103). Related devices are also discussed.
摘要:
A liquid crystal device includes a first polarization grating (101), a second polarization grating (102), and a liquid crystal layer (103). The first polarization grating (101) is configured to polarize and diffract incident light (190) into first and second beams (195,196) having different polarizations and different directions of propagation relative to that of the incident light (190). The liquid crystal layer (103) is configured to receive the first and second beams (195,196) from the first polarization grating (101). The liquid crystal layer (103) is configured to be switched between a first state that does not substantially affect respective polarizations of the first and second beams (195,196) traveling therethrough, and a second state that alters the respective polarizations of the first and second beams (195,196) traveling therethrough. The second polarization grating (102) is configured to analyze and diffract the first and second beams (195,196) from the liquid crystal layer (103) to alter the different directions of propagation thereof in response to the state of the liquid crystal layer (103). Related devices are also discussed.
摘要:
A charge pumping apparatus includes a voltage pumping unit for pumping an input voltage, a voltage pumping control unit for controlling the voltage pumping unit according to a comparison result between the input voltage and an input criterion voltage and a comparison result between an output voltage output from the voltage pumping unit and an output criterion voltage, and an optimum power point tracking unit for tracking an optimum power point in the case of detecting that the output voltage decreases lower than the output criterion voltage, and adjusting an input impedance to change the input criterion voltage to a voltage corresponding to the optimum power point, wherein the optimum power point is a power point where an input power according to the input voltage becomes a maximum. Since the optimum power point is tracked by measuring only a voltage without a current sensor, a power loss is small.
摘要:
A charge pumping apparatus includes a voltage pumping unit for pumping an input voltage, a voltage pumping control unit for controlling the voltage pumping unit according to a comparison result between the input voltage and an input criterion voltage and a comparison result between an output voltage output from the voltage pumping unit and an output criterion voltage, and an optimum power point tracking unit for tracking an optimum power point in the case of detecting that the output voltage decreases lower than the output criterion voltage, and adjusting an input impedance to change the input criterion voltage to a voltage corresponding to the optimum power point, wherein the optimum power point is a power point where an input power according to the input voltage becomes a maximum. Since the optimum power point is tracked by measuring only a voltage without a current sensor, a power loss is small.
摘要:
Specifically, according to one embodiment of the present invention, a method for searching for an access point is provided. The method for searching may comprises the steps of: a terminal measuring the position thereof; checking an access point located near the measured position of the terminal; determining whether or not the distance between the terminal and the access point is greater than the radius range searchable by the terminal; and searching for the access point when the distance between the terminal and the access point is less than the radius range.
摘要:
Specifically, according to one embodiment of the present invention, a method for operating a base station that assigns frequency resources to terminals in a wireless communication system is provided. The method comprises the steps of calculating a first metric using information relating to the transmission rate of each terminal; calculating a second metric using information relating to a proportion of a group to which each of the terminals belongs; determining a terminal to which a frequency resource is assigned on the basis of the calculated first and second metrics; assigning the resource to the determined terminal; and updating the information relating to the transmission rate for each terminal and the information relating to proportion of a group.
摘要:
The present invention relates to a method for a base station to manage resources in order to perform beamforming in a wireless access system, the method being characterized by comprising the steps of: receiving cluster information from a cluster head; and determining, on the basis of the received cluster information, terminals to be scheduled in a cluster including the cluster head, wherein the cluster information comprises location and channel gain information for the terminals belonging to the cluster including the cluster head.
摘要:
The present application relates to a method for central node (CN) to remove inter-cell interference of an access point (AP) in a wireless access system according to the present invention, including: receiving feedback information at each time slot from a plurality of APs, the feedback information including channel measurement information between terminals in each AP and the coverage of each AP, or position information of each AP; obtaining a preference for each pattern, the pattern representing an ON or OFF operation of each AP at each time slot; determining a target time rate of each pattern on the basis of the obtained preference for each pattern; receiving an instantaneous transfer rate of terminals in the coverage of each AP for each pattern from the plurality of APs; and determining a pattern in order to minimize reference between each AP according to the received instantaneous transfer rate.