摘要:
A method for detecting accretion or abrasion on a first measuring tube of a flow measuring device. A first temperature as a function of time is registered via a first temperature sensor, which is arranged on the first measuring tube in such a manner that, between the first temperature sensor and the medium, at least one measuring tube wall of the first measuring tube is embodied. Parallel in time, a second reference temperature as a function of time is registered by a second temperature sensor, which is spaced from the first temperature sensor and thermally coupled to the medium. Therefrom, at least one variable characteristic is determined, and accretion or abrasion on the first measuring tube is detected, if the at least one determined characteristic variable or a variable derived therefrom deviates by more than a limit value from a predetermined reference variable.
摘要:
A method for detecting accretion or abrasion on a first measuring tube of a flow measuring device. A first temperature as a function of time is registered via a first temperature sensor, which is arranged on the first measuring tube in such a manner that, between the first temperature sensor and the medium, at least one measuring tube wall of the first measuring tube is embodied. Parallel in time, a second reference temperature as a function of time is registered by a second temperature sensor, which is spaced from the first temperature sensor and thermally coupled to the medium. Therefrom, at least one variable characteristic is determined, and accretion or abrasion on the first measuring tube is detected, if the at least one determined characteristic variable or a variable derived therefrom deviates by more than a limit value from a predetermined reference variable.
摘要:
A measuring system comprises: a measuring transducer, through which medium flows and which produces oscillatory signals dependent on medium viscosity and/or a Reynolds number of the flowing medium; and transmitter electronics for driving the measuring transducer and for evaluating oscillatory signals. The measuring transducer includes: four, mutually spaced, flow openings; an outlet-side flow divider with four, mutually spaced, flow openings; four, mutually parallel, straight, measuring tubes for conveying flowing medium, connected to the flow dividers electromechanical exciter mechanism. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into torsional oscillations of the first measuring tube, opposite-equal torsional oscillations of the second measuring tube, as well as into torsional oscillations of the third measuring tube, opposite-equal torsional oscillations of the fourth measuring tube.
摘要:
The measuring system comprises: a measuring transducer, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; transmitter electronics for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: an inlet-side flow divider; an outlet-side flow divider; at least two, mutually parallel, straight, measuring tubes, connected to the flow dividers; as well as an electromechanical exciter mechanism for exciting and maintaining mechanical oscillations of the at least two measuring tubes. Each of the at least two measuring tubes opens with an inlet-side measuring tube end into a flow opening and with an outlet-side. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into opposite-equal torsional oscillations of the at least two measuring tubes.
摘要:
The measuring system of the invention comprises: A measuring transducer of vibration-type, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: An inlet-side flow divider (201) with four, mutually spaced, flow openings (201A, 201B, 201C, 201D); an outlet-side flow divider (202) with four, mutually spaced, flow openings (202A, 202B, 202C, 202D); four, mutually parallel, straight, measuring tubes (181, 182, 183, 184) for conveying flowing medium, connected to the flow dividers (201, 202) for forming a tube arrangement having at least four flow paths for parallel flow; as well as an electromechanical exciter mechanism (4) for exciting and maintaining mechanical oscillations of the measuring tubes (181, 182). Each of the four measuring tubes opens with an inlet-side measuring tube end into a flow opening (201A) of the inlet-side flow divider (201) and with an outlet-side, second measuring tube end into a flow opening (202A) of the outlet-side flow divider (202), a third measuring tube opens with an inlet-side measuring tube end into a flow opening (201C) of the inlet-side flow divider (201) and with an outlet-side, second measuring tube end into a flow opening (202C) of the outlet-side flow divider (202) and a fourth measuring tube opens with an inlet-side measuring tube end into a flow opening (201D) of the inlet-side flow divider (201) and with an outlet-side, second measuring tube end into a flow opening (202D) of the outlet-side flow divider (202). The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into torsional oscillations of the first measuring tube (181), opposite-equal torsional oscillations of the second measuring tube (182), as well as into torsional oscillations of the third measuring tube (183), opposite-equal torsional oscillations of the fourth measuring tube (184).
摘要:
The measuring system of the invention comprises: A measuring transducer of vibration-type, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; as well as a transmitter electronics electrically coupled with the measuring transducer for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: An inlet-side flow divider (201) having at least two, mutually spaced, flow openings (201A, 201B); an outlet-side flow divider (202) having at least two, mutually spaced, flow openings (202A, 202B); at least two, mutually parallel, straight, measuring tubes (181, 182) for conveying flowing medium, connected to the flow dividers (201, 202) for forming a tube arrangement having at least two flow paths for parallel flow; as well as an electromechanical exciter mechanism (4) for exciting and maintaining mechanical oscillations of the at least two measuring tubes (181, 182). Each of the at least two measuring tubes opens with an inlet-side measuring tube end into a flow opening (201A) of the inlet-side flow divider (201) and with an outlet-side, second measuring tube end into a flow opening (202A) of the outlet-side flow divider (202). The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into opposite-equal torsional oscillations of the at least two measuring tubes (181, 182).
摘要:
An installed hardware of a measuring field device includes at least one transducer reacting during operation to a chemical and/or physical, measured variable of a pourable and/or flowable medium, especially a pourable or flowable bulk good, liquid, gas or the like, as well as a microcomputer communicating during operation with the transducer. The field device is first installed by means of the transducer on, and/or in a process vessel serving for conveying and/or holding pourable and/or flowable media for forming a process measuring point. Thereafter, the microcomputer is booted and a basic software held in a memory provided within the field device for providing, at least in part, basic functionalities of the field device is activated in such a manner that the basic software is executable by means of the microcomputer so that, in the interaction of basic software and hardware installed in the field device, the basic functionalities of the field device are available. Additionally, at least one initial identification parameter set held at least temporarily in the field device and at least approximately identifying the process measuring point is transferred, with application of basic software executed in the microcomputer, to a data processing system superordinated externally of the field device, and at least one upgrade software providing custom functionalities for the field measuring device going beyond the basic functionalities and held in a second memory, is selected from an ensemble of software products, taking into consideration the at least one, initial identification parameter set. A selected upgrade software fitted to the process measuring point is then transferred into a third memory provided within the field measuring device and then activated in such a manner that it is executable by means of the microcomputer, so that, in interaction of upgrade software and hardware installed in the field device, custom functionalities of the field measuring device are available.
摘要:
An installed hardware of a measuring field device includes at least one transducer reacting during operation to a chemical and/or physical, measured variable of a pourable and/or flowable medium, especially a pourable or flowable bulk good, liquid, gas or the like, as well as a microcomputer communicating during operation with the transducer. The field device is first installed by means of the transducer on, and/or in a process vessel serving for conveying and/or holding pourable and/or flowable media for forming a process measuring point. Thereafter, the microcomputer is booted and a basic software held in a memory provided within the field device for providing, at least in part, basic functionalities of the field device is activated in such a manner that the basic software is executable by means of the microcomputer so that, in the interaction of basic software and hardware installed in the field device, the basic functionalities of the field device are available. Additionally, at least one initial identification parameter set held at least temporarily in the field device and at least approximately identifying the process measuring point is transferred, with application of basic software executed in the microcomputer, to a data processing system superordinated externally of the field device, and at least one upgrade software providing custom functionalities for the field measuring device going beyond the basic functionalities and held in a second memory, is selected from an ensemble of software products, taking into consideration the at least one, initial identification parameter set. A selected upgrade software fitted to the process measuring point is then transferred into a third memory provided within the field measuring device and then activated in such a manner that it is executable by means of the microcomputer, so that, in interaction of upgrade software and hardware installed in the field device, custom functionalities of the field measuring device are available.
摘要:
A method and apparatus for measuring and/or monitoring at least one flow parameter of a medium, which medium flows through a measuring tube, wherein the measuring tube is contacted by at least two transducer elements, by means of which the measuring tube is excitable to execute mechanical oscillations and by means of which mechanical oscillations of the measuring tube are receivable. Each of the at least two transducer elements is applied, offset in time, alternately, for exciting the measuring tube to execute mechanical oscillations and for receiving the mechanical oscillations of the measuring tube.
摘要:
The sensor module includes: a sensor housing; at least one measuring transducer arranged at least partially in the sensor housing for registering at least one measured variable and for producing at least one primary signal influenced by the measured variable; as well as sensor electronics arranged within the sensor housing and connected with the measuring transducer for converting the primary signal delivered from the measuring transducer into a sensor signal. Further provided in the sensor electronics is an energy supply unit, which includes at least one energy storer arranged within the sensor housing for storing energy to be converted in the measuring system. The transmitter module is coupled to the sensor module and includes a transmitter housing and a transmitter electronics accommodated in the transducer housing and electrically coupled with the sensor electronics for converting the sensor signal delivered from the sensor module into measured values representing the at least one measured variable.