摘要:
A method of using photoacoustic spectroscopy to determine chemical information about an analyte includes the steps of emitting a light ray for interaction with a sample of an analyte; transmitting the light ray through a fill fluid disposed in a detection cell, the fill fluid having molecules substantially similar to molecules of the analyte to absorb the light ray; producing a thermal wave and oscillation in the fill fluid proportional to an intensity of the light ray; including a pressure oscillation in the fill fluid by the thermal wave; and detecting the pressure oscillation by a microphone to determine information about the analyte sample.
摘要:
A method of using photoacoustic spectroscopy to determine chemical information about an analyte includes the steps of emitting a light ray for interaction with a sample of an analyte; transmitting the light ray through a fill fluid disposed in a detection cell, the fill fluid having molecules substantially similar to molecules of the analyte to absorb the light ray; producing a thermal wave and oscillation in the fill fluid proportional to an intensity of the light ray; including a pressure oscillation in the fill fluid by the thermal wave; and detecting the pressure oscillation by a microphone to determine information about the analyte sample.
摘要:
A method of real-time processing and monitoring comprises the steps of blending a material of interest (e.g., an active pharmaceutical material), with a secondary material, (e.g., an excipient), illuminating the blended materials with light, reflecting light carrying information about the blended materials through at least one multivariate optical element (148) and detecting said light with a first detector (152), detecting a deflected portion of the information carrying light with a second detector (156), and determining in real-time at least one selected property of the blended materials based on the detector outputs.
摘要:
A method of high-speed processing and monitoring of a product, such as a pharmaceutical powder or tablet, comprises: moving the product (C) past an inspection station; illuminating at least a portion of the product with light; spectrally filtering a first portion of light carrying information about the product, o.g., transmitted or reflected light, by passing said first portion through at least one multivariate optical element (148) and detecting said filtered light with a first detector (152), —detecting a deflected second portion of said light with a second detector (156); and determining at least one selected property of the product based on the detector outputs.
摘要:
A method of real-time processing and monitoring comprises the steps of blending a material of interest (e.g., an active pharmaceutical material), with a secondary material, (e.g., an excipient), illuminating the blended materials with light, reflecting light carrying information about the blended materials through at least one multivariate optical element (148) and detecting said light with a first detector (152), detecting a deflected portion of the information carrying light with a second detector (156), and determining in real-time at least one selected property of the blended materials based on the detector outputs.
摘要:
A method of using photoacoustic spectroscopy to determine chemical information about an analyte includes the steps of emitting a light ray for interaction with a sample of an analyte; transmitting the light ray through a fill fluid disposed in a detection cell, the fill fluid having molecules substantially similar to molecules of the analyte to absorb the light ray; producing a thermal wave and oscillation in the fill fluid proportional to an intensity of the light ray; including a pressure oscillation in the fill fluid by the thermal wave; and detecting the pressure oscillation by a microphone to determine information about the analyte sample.
摘要:
A method of high-speed processing and monitoring of a product, such as a pharmaceutical powder or tablet, comprises: moving the product (C) past an inspection station; illuminating at least a portion of the product with light; spectrally filtering a first portion of light carrying information about the product, o.g., transmitted or reflected light, by passing said first portion through at least one multivariate optical element (148) and detecting said filtered light with a first detector (152), —detecting a deflected second portion of said light with a second detector (156); and determining at least one selected property of the product based on the detector outputs.
摘要:
A method of using photoacoustic spectroscopy to determine chemical information about an analyte includes the steps of emitting a light ray for interaction with a sample of an analyte; transmitting the light ray through a fill fluid disposed in a detection cell, the fill fluid having molecules substantially similar to molecules of the analyte to absorb the light ray; producing a thermal wave and oscillation in the fill fluid proportional to an intensity of the light ray; including a pressure oscillation in the fill fluid by the thermal wave; and detecting the pressure oscillation by a microphone to determine information about the analyte sample
摘要:
A method of classifying information in an optical analysis system includes obtaining calibration data defining a plurality of data points, each data point representing values for two or more detectors when sampling a material used to construct a multivariate optical element. Based on the calibration data, one or more validation models can be developed to indicate one or more ranges of expected results. Validation data comprising the models can be used to compare data points representing values for two or more detectors when performing a measurement of a material to determine if the data points fall within an expected range. Classification data can be generated based on the comparison and, in some embodiments, one or more indicators, such as a confidence level in a measurement, can be provided.
摘要:
A method of arranging and utilizing a multivariate optical computing and analysis system includes transmitting light from a light source; reflecting the light from the sample; directing a portion of the light reflected from the sample with a beamsplitter; and arranging an optical filter mechanism in a normal incidence orientation to receive the light reflected from the sample, the optical filter mechanism configured to filter and measure data carried by the light reflected from the sample.