摘要:
An electromagnetic interference (EMI) shielded device which includes an object to be shielded and an EMI shielding material encompassing the object. The EMI shielding material is made up of, but not limited to a broadband biopolymer or polymer dissolved in organic solvents and shielding guest material. The specific makeup of the shielding material and fabrication procedure of the shielding material is also included herein.
摘要:
An electromagnetic interference (EMI) shielded device which includes an object to be shielded and an EMI shielding material encompassing the object. The EMI shielding material is made up of, but not limited to a broadband biopolymer or polymer dissolved in organic solvents, and metal and carbon-based nano-powders or nanoparticles. The specific makeup of the shielding material and fabrication procedure of the shielding material is also included herein.
摘要:
An electromagnetic interference (EMI) shielded device which includes an object to be shielded and an EMI shielding material encompassing the object. The EMI shielding material is made up of, but not limited to a broadband biopolymer or polymer dissolved in organic solvents, and metal and carbon-based nano-powders or nanoparticles. The specific makeup of the shielding material and fabrication procedure of the shielding material is also included herein.
摘要:
An electromagnetic interference (EMI) shielded device which includes an object to be shielded and an EMI shielding material encompassing the object. The EMI shielding material is made up of, but not limited to a broadband biopolymer or polymer dissolved in organic solvents and shielding guest material. The specific makeup of the shielding material and fabrication procedure of the shielding material is also included herein.
摘要:
An electromagnetic interference (EMI) shielded device which includes an object to be shielded and an EMI shielding material encompassing the object. The EMI shielding material is made up of, but not limited to a broadband biopolymer or polymer dissolved in organic solvents, and metal and carbon-based nano-powders or nanoparticles. The specific makeup of the shielding material and fabrication procedure of the shielding material is also included herein.
摘要:
A semiconductor device provides a metal contact, a DNA layer, wherein the metal layer and the DNA layer are adapted to form a Schottky barrier junction there between, and a conductive contact with the DNA layer.
摘要:
A commercially attractive arrangement for monolithic integration of a nonlinear optical polymer transverse electro-optic device on an electronic integrated circuit chip. The invention provides for conductive polymer cladding layers immediately adjacent to an optical signal transmitting nonlinear optical polymer core layer. The cladding layers result in a reduced core layer poling voltage, reduced device length, and 5 VDC or less controlling voltage, allowing inclusion into electronic integrated circuit chips of a size compatible with multichip module integration.
摘要:
A non-liner electron-optic polymer based, integrated optic, electron-optic device utilizing a non-liner electron-optic polymer for the optical wave guide core layer sandwich between two very thin optically transparent electrically conductive charge sheet poling electrode layers which are, in turn, sandwiched between two electrically passive polymer optical wave guide cladding layers.
摘要:
A commercially attractive arrangement for monolithic integration of a nonlinear optical polymer transverse electro-optic device for high data rate optical signals on an electronic integrated circuit chip. The invention provides for conductive polymer sheet layers immediately adjacent to an optical signal transmitting nonlinear optical polymer core layer. Electrically passive polymer cladding layers are also provided adjacent to the conductive polymer sheet layers to achieve lower optical signal losses. The combination provides a reduced nonlinear optical polymer core layer poling voltage, reduced device length, and 5 VDC or less controlling voltage, allowing inclusion into electronic integrated circuit chips of a size compatible with multichip module integration.
摘要:
An improved method for enriched chirality of single wall carbon nanotubes is described. Genomic DNA, particularly salmon DNA (SaDNA) is shown to sort out single wall carbon nanotubes of specific chirality by a process of solubilization (dissolving in solution) and separation (such as centrifuging), without requiring more complex processes such as anion exchange chromatography. A possible reason for enhanced chirality separation using DNA may be attributed to its lowered GC (guanine-cytosine) content.