Abstract:
An optimized bump and offset along the spring section of a load beam of a head-gimbal assembly ("HGA") in the loaded state redistributes the mass and stiffness distributions of the load beam from a truly flat state, so that the mode shape of the first torsional resonance mode is changed such that the coupling between a drive actuator head arm and the head slider is essentially eliminated. A fabrication method to produce the desired bump and offset, and a characterization method to ascertain that optimized bump and offset parameters have been achieved are also disclosed. By optimizing bump and offset, the slider remains independent from any load beam first torsional vibration even at resonance and/or sway mode resonant frequency of the HGA may be increased.
Abstract:
An optimized bump and offset along the spring section of a load beam of a head-gimbal assembly ("HGA") in the loaded state redistributes the mass and stiffness distributions of the load beam from a truly flat state, so that the mode shape of the first torsional resonance mode is changed such that the coupling between a drive actuator head arm and the head slider is essentially eliminated. A fabrication method to produce the desired bump and offset, and a characterization method to ascertain that optimized bump and offset parameters have been achieved are also disclosed. By optimizing bump and offset, the slider remains independent from any load beam first torsional vibration even at resonance and/or sway mode resonant frequency of the HGA may be increased.
Abstract:
A method corrects track misregistration attributable to out-of-plane motions of a rotating disk in a hard disk drive, and includes the steps of measuring a base plate-roll-bias angle between the rotating data storage disk and the head arm with a precision measuring device, and connecting the head arm and load beam at a roll-bias angle selected to minimize track misregistration attributable to the roll-bias. A number of connection arrangements and structures are presented in order to achieve the desired reduction in track misregistration.
Abstract:
A magnetic head suspension assembly is fabricated with an integral piece which includes a load beam section, a flexure section, a rear mount section and a leaf spring section between the load beam and rear mount. A tongue extends from the load beam to the flexure and has a down-facing load dimple which contacts the non-air bearing surface of an attached air bearing slider. The flexure includes narrow thin legs adjacent to a cutout that delineates the load beam tongue. The head suspension is characterized by a high first bending mode frequency and low pitch and roll stiffness.
Abstract:
The invention provides for improved devices and methods for forming openings in a biological membrane for delivering substances into an animal through the biological membrane for treatment applications, or extracting substances from the animal through the biological membrane for monitoring or other diagnosis applications and for increased transmembrane flux.
Abstract:
A method of enhancing the permeability of the skin to an analyte for diagnostic purposes or to a drug for therapeutic purposes is described utilizing microporation and optionally sonic energy and a chemical enhancer. If selected, the sonic energy may be modulated by means of frequency modulation, amplitude modulation, phase modulation, and/or combinations thereof. Microporation is accomplished by (a) ablating the stratum corneum by localized rapid heating of water such that such water is vaporized, thus eroding the cells; (b) puncturing the stratum corneum with a micro-lancet calibrated to form a micropore of up to about 1000 .mu.m in diameter; (c) ablating the stratum corneum by focusing a tightly focused beam of sonic energy onto the stratum corneum; (d) hydraulically puncturing the stratum corneum with a high pressure jet of fluid to form a micropore of up to about 1000 .mu.m in diameter, or (e) puncturing the stratum corneum with short pulses of electricity to form a micropore of up to about 1000 .mu.m in diameter. A dye with an absorption maximum matched to the wavelength of a pulsed light source can be absorbed into the stratum corneum to concentrate the energy of the pulsed light source and aid in ablation of the stratum corneum. Alternatively, a hot wire can be caused to contact the stratum corneum.
Abstract:
A system and method for detecting a measuring an analyte in a biological fluid of an animal. A harvesting device (10) is provided suitable for positioning on the surface of tissue of an animal to harvest biological fluid therefrom. The harvesting device (10) comprises an analyte sensor (50) positioned to be contacted by the harvested biological fluid and which generates a measurement signal representative of the analyte. At least one attribute sensor (40) is provided to measure an attribute associated with the biological fluid harvesting operation of the harvesting device (10) or the assay of the biological fluid, and which generates an attribute signal representative of the attribute. Adjustments are made to operational parameters of the harvesting device (10) based on the one or more attributes.
Abstract:
A method of enhancing the permeability of the skin to an analyte for diagnostic purposes or to a drug for therapeutic purposes is described utilizing microporation and optionally sonic energy and a chemical enhancer. If selected, the sonic energy may be modulated by means of frequency modulation, amplitude modulation, phase modulation, and/or combinations thereof. Microporation is accomplished by (a) ablating the stratum corneum by localized rapid heating of water such that such water is vaporized, thus eroding the cells; (b) puncturing the stratum corneum with a micro-lancet calibrated to form a micropore of up to about 1000 .mu.m in diameter; (c) ablating the stratum corneum by focusing a tightly focused beam of sonic energy onto the stratum corneum; (d) hydraulically puncturing the stratum corneum with a high pressure jet of fluid to form a micropore of up to about 1000 .mu.m in diameter, or (e) puncturing the stratum corneum with short pulses of electricity to form a micropore of up to about 1000 .mu.m in diameter. A dye with an absorption maximum matched to the wavelength of a pulsed light source can be absorbed into the stratum corneum to concentrate the energy of the pulsed light source and aid in ablation of the stratum corneum. Alternatively, a hot wire can be caused to contact the stratum corneum.
Abstract:
A self-contained hydrodynamic bearing unit includes a shaft and a shaft housing defining an opening for receiving the shaft for relative rotation. The shaft and bearing define at least one radial hydrodynamic bearing and an annular thrust bearing, formed as a disk portion extending radially outward of a main cylindrical surface of the shaft which cooperates with an adjacent annular face of the shaft housing. A gap between an outer cylindrical wall of the thrust bearing disk portion and an adjacently facing cylindrical surface of the shaft housing provides a primary annular capillary seal segment. An annular bushing ring extends from the housing radially inwardly to enclose the thrust bearing disk, and cooperates with an adjacent outer face of the thrust bearing disk to provide a secondary containment capillary seal segment. Normally, lubricating liquid is in the bearing unit at the radial hydrodynamic bearing, at the hydrodynamic thrust bearing and in the primary annular capillary seal segment. However, if liquid overflows from, or extends beyond the primary seal segment as by thermal expansion, it is contained in the secondary seal segment and urged to return by centrifugal force to the primary seal segment. A tertiary containment seal may also be provided to prevent escape of liquid to the external ambient.