摘要:
Logging tools and methods for obtaining a three-dimensional (3D) image of the region around a borehole. In at least some embodiments, a 3D imaging tool rotates, transmitting pulses that are approximately a nanosecond long and measuring the time it takes to receive reflections of these pulses. Multiple receivers are employed to provide accurate triangulation of the reflectors. In some cases, multiple transmitters are employed to obtain compensated measurements, i.e., measurements that compensate for variations in the receiver electronics. Because reflections occur at boundaries between materials having different dielectric constants, the 3D imaging tool can map out such boundaries in the neighborhood of the borehole. Such boundaries can include: the borehole wall itself, boundaries between different formation materials, faults or other discontinuities in a formation, and boundaries between fluids in a formation. Depending on various factors, the size of the borehole neighborhood mapped out can be as large as 1 meter.
摘要:
Logging tools and methods for obtaining a three-dimensional (3D) image of the region around a borehole. In at least some embodiments, a 3D imaging tool rotates, transmitting pulses that are approximately a nanosecond long and measuring the time it takes to receive reflections of these pulses. Multiple receivers are employed to provide accurate triangulation of the reflectors. In some cases, multiple transmitters are employed to obtain compensated measurements, i.e., measurements that compensate for variations in the receiver electronics. Because reflections occur at boundaries between materials having different dielectric constants, the 3D imaging tool can map out such boundaries in the neighborhood of the borehole. Such boundaries can include: the borehole wall itself, boundaries between different formation materials, faults or other discontinuities in a formation, and boundaries between fluids in a formation. Depending on various factors, the size of the borehole neighborhood mapped out can be as large as 1 meter.
摘要:
Various embodiments include apparatus and methods to make resistivity measurements in a borehole using tool having an array of electrodes operable to provide focused currents, measure corresponding voltages, and measure corresponding voltage differences to determine resistivity. Tools can be configured to operate at a plurality of modes when voltage differences at some frequencies are effectively unreadable. Additional apparatus, systems, and methods are disclosed.
摘要:
Various embodiments include apparatus and methods to detect and locate conductive bodies and/or provide steam-assisted gravity drainage (SAGD) steering operation. Tools can be configured with receiving sensors (310) arranged to cancel substantially a primary signal associated with a probe signal without rotating the receiving sensors to cancel the primary signal and to capture a secondary signal generated from a conductive body (301) below the earth's surface. Additional apparatus, systems, and methods are disclosed.
摘要:
Multi-array laterolog tool systems and methods acquire a set of array measurements sufficient to provide laterolog tool measurements of differing array sizes. Such systems and method offer multiple depths of investigation while offering greater measurement stability in borehole environments having high resistivity contrasts. In at least some system embodiments, a wireline or LWD tool body has a center electrode positioned between multiple pairs of guard electrodes and a pair of return electrodes. The tool's electronics provide a current from the center electrode to the pair of return electrodes and currents from each pair of guard electrodes to the pair of return electrodes. Each of the currents may be distinguishable by frequency or distinguishable by some other means. This novel arrangement of currents provides a complete set of measurements that enables one tool to simultaneously emulate a whole range of laterolog tools.
摘要:
Various embodiments include apparatus and methods of determining resistivity of fluids downhole in a well. The apparatus and methods may include using a sensor that employs a focused electric dipole as a transmitter and a uses a receiver to detect the electric current strength in the fluid under measurement responsive to the transmitter. Additional apparatus, systems, and methods are disclosed.
摘要:
Nearby conductors such as pipes, well casing, etc., are detectable from within a borehole filled with an oil-based fluid. At least some method embodiments provide a current flow between axially-spaced conductive bridges on a drillstring. The current flow disperses into the surrounding formation and causes a secondary current flow in the nearby conductor. The magnetic field from the secondary current flow can be detected using one or more azimuthally-sensitive antennas. Direction and distance estimates are obtainable from the azimuthally-sensitive measurements, and can be used as the basis for steering the drillstring relative to the distant conductor. Possible techniques for providing current flow in the drillstring include imposing a voltage across an insulated gap or using a toroid around the drillstring to induce the current flow.
摘要:
Multi-array laterolog tool systems and methods acquire a set of array measurements sufficient to provide laterolog tool measurements of differing array sizes. Such systems and method offer multiple depths of investigation while offering greater measurement stability in borehole environments having high resistivity contrasts. In at least some system embodiments, a wireline or LWD tool body has a center electrode positioned between multiple pairs of guard electrodes and a pair of return electrodes. The tool's electronics provide a current from the center electrode to the pair of return electrodes and currents from each pair of guard electrodes to the pair of return electrodes. Each of the currents may be distinguishable by frequency or distinguishable by some other means. This novel arrangement of currents provides a complete set of measurements that enables one tool to simultaneously emulate a whole range of laterolog tools.
摘要:
Downhole tools and techniques acquire information regarding nearby conductors such as pipes, well casing, and conductive formations. At least some method embodiments provide a current flow along a drill string in a borehole. The current flow disperses into the surrounding formation and causes a secondary current flow in the nearby conductor. The magnetic field from the secondary current flow can be detected using one or more azimuthally-sensitive antennas. Direction and distance estimates may be obtainable from the azimuthally-sensitive measurements, and can be used as the basis for steering the drillstring relative to the distant conductor. Possible techniques for providing current flow in the drillstring include imposing a voltage across an insulated gap or using a toroid around the drillstring to induce the current flow.
摘要:
Disclosed dielectric logging tools and methods employ three or more receive horn antennas positioned between at least two transmit antennas, which can also be horn antennas. The logging tools can operate in the range between 100 MHz and 10 GHz to provide logs of formation permittivity, formation conductivity, standoff distance, and electrical properties of material in the standoff gap. Logs of water-saturated porosity and/or oil movability can be readily derived. The presence of additional receive antennas offers a significantly extended operating range, additional depths of investigation, increased measurement accuracy, and further offers compensation for tool standoff and mudcake effects. In both wireline and logging while drilling embodiments, at least some disclosed dielectric logging tools employ a set of three axially-spaced receive antennas positioned between pairs of axially-spaced transmit antennas. At least some disclosed methods employ absolute amplitude and phase measurements in response to alternate firings of the transmit antennas.