摘要:
A fight analysis system to objectively determine the quality and quantity of strikes in a fight. In one exemplary embodiment, one fighter wears a receiving module having a plurality of passive RFID tags at different locations that are read by a striking module (e.g., a knife) when the striking module lands on, or comes in proximity to, the receiving module, to provide the location of a strike. Force sensors in the striking module enable determination of the type and force of a landed strike. A graphical user interface module displays information gathered by the fight analysis system.
摘要:
A fight analysis system to objectively determine the quality and quantity of strikes in a fight. In one exemplary embodiment, one fighter wears a receiving module having a plurality of passive RFID tags at different locations that are read by a striking module (e.g., a knife) when the striking module lands on, or comes in proximity to, the receiving module, to provide the location of a strike. Force sensors in the striking module enable determination of the type and force of a landed strike. A graphical user interface module displays information gathered by the fight analysis system.
摘要:
A fight analysis system to objectively determine the quality and quantity of strikes in a fight. In one exemplary embodiment, one fighter wears a plurality of passive RFID tags at different locations that are read by a striking module (e.g., a knife) when the striking module lands on, or comes in proximity to, the fighter, to provide the location of a strike. Force sensors in the striking module enable determination of the type and force of a landed strike. In another exemplary embodiment, force sensors (e.g., pressure sensors used with fluid bladders) are used to determine both the location and the force associated with a landed strike. A graphical user interface module displays information gathered by the fight analysis system.
摘要:
A method and apparatus for identifying different types of energy sources used to charge a battery by receiving energy from at least one of the different types of energy sources at input terminals, identifying the type of energy source, and selecting a mode for charging the battery based on the type of energy source identified. A method and apparatus for protecting against certain energy sources used to charge a battery is also disclosed.
摘要:
A method and apparatus for identifying different types of energy sources used to charge a battery by receiving energy from at least one of the different types of energy sources at input terminals, identifying the type of energy source, and selecting a mode for charging the battery based on the type of energy source identified. A method and apparatus for protecting against certain energy sources used to charge a battery is also disclosed.
摘要:
Disclosed herein are methods and apparatuses for the transmission of audio information from a bone-conduction headset to a user. The bone-conduction headset may be mounted on a glasses-style support structure. The bone-conduction transducer may be mounted near where the glasses-style support structure approach a wearer's ears. In one embodiment, an apparatus has a bone-conduction transducer with a diaphragm configured to vibrate based on a magnetic field. The magnetic field being based off an applied electric field. The apparatus may also have an anvil coupled to the diaphragm. The anvil may be configured to conduct the vibration from the bone-conduction transducer. Additionally, the anvil may be coupled to a metallic component. The metallic component may be configured to couple to a magnetic field created by the bone-conduction transducer.
摘要:
Systems and methods for a bone-conduction transducer array configured to provide spatial audio are described, in which the bone-conduction transducer array may be coupled to a head-mountable device so as to provide sound, for example, to a wearer of the head-mountable device. Audio information and a vibration transducer from an array of vibration transducers coupled to the head-mountable computing device may be caused to vibrate based at least in part on the audio signal so as to transmit a sound. Information indicating a movement of the wearable computing device toward a given direction may be received. One or more parameters associated with causing the at least one vibration transducer to emulate the sound from the given direction may then be determined, wherein the one or more parameters are representative of a correlation between the audio information and the information indicating the movement.
摘要:
Disclosed are systems, methods, and devices for interfacing with a wearable heads-up display via a touch-operable input device. The wearable heads-up display may include a display element for receiving and displaying display information received from a processor, and may also include a wearable frame structure supporting the display element and having a side-arm extending away from the display element. In some embodiments, the display information may appear at least partially curved to a user. In some embodiments, only a portion of the display information is shown on the at least one display element. The side-arm may be configured to secure the heads-up display to a user's body in a manner such that the display element is disposed within a field of view of the user. The touch-operable input device secured to the wearable frame structure is configured to sense at least one of a position and movement of a touch or finger along a planar direction relative to a surface of the input device, and to provide corresponding input information to the processor. A navigation tool may also be displayed on the at least one display element for indicating the location of the touch on the touch-operable input device.
摘要:
Optical glasses, as well as other eyewear, are provided with a frame that has a camera button located on a part of the glasses frame most preferably centered just above one of the lenses.
摘要:
Disclosed are systems, methods, and devices for interfacing with a wearable heads-up display via a touch-operable input device. The wearable heads-up display may include a display element for receiving and displaying display information received from a processor, and may also include a wearable frame structure supporting the display element and having a side-arm extending away from the display element. In some embodiments, the display information may appear at least partially curved to a user. In some embodiments, only a portion of the display information is shown on the at least one display element. The side-arm may be configured to secure the heads-up display to a user's body in a manner such that the display element is disposed within a field of view of the user. The touch-operable input device secured to the wearable frame structure is configured to sense at least one of a position and movement of a touch or finger along a planar direction relative to a surface of the input device, and to provide corresponding input information to the processor. A navigation tool may also be displayed on the at least one display element for indicating the location of the touch on the touch-operable input device.