摘要:
The present invention provides systems and methods for communication system control utilizing corrected forward error correction (FEC) error location identifiers in multi-level modulation scheme systems. The present invention utilizes precise error correction information, available for each FEC block of a particular code (including, but not limited to, block codes and concatenated block codes employing iterative decoding as well as convolutional codes (including turbo codes) and low-density parity-check code (LDPC) class codes) used (e.g., Bose, Ray-Chaudhuri, Hocquenghem (BCH), Reed-Solomon, etc.), as a result of the FEC decoding process to provide feedback to close the loop for control of a demodulator (i.e., receiver). Each error location can be uniquely traced back to a particular sub-rate signal path, with running, post-FEC corrected BER (bit error rate) calculations generated on each sub-rate signal. Advantageously, this provides the ability to adjust thresholds and various other parameters to achieve and maintain error-free operation quickly.
摘要:
A system for providing optical connections that may include an optical grating structure and an optical waveguide coupled to the optical grating structure. The optical grating structure may be configured to receive an optical wave, through an interposer, from an optical source. The optical grating structure may be configured to transform the optical wave into a predetermined electromagnetic propagation mode.
摘要:
A Microelectromechanical systems (MEMS)-based N×M cross-point switch, a MEMS-based system, and a method provide MEMS-based cross-point electrical switching for a Layer 0 flow-based switch. The N×M cross-point switch includes N inputs each at least 10 Gbps, M output each at least 10 Gbps, a plurality of Radio Frequency (RF) MEMS switches selectively interconnecting the N inputs to the M outputs; and control and addressing circuitry to selectively control the plurality of RF MEMS switches to switch each of the N inputs to a corresponding output of the M outputs. The systems and methods provide an electrical switching fabric for flow-based switching of wavelengths that can be part of a Reconfigurable Electrical Add/Drop Multiplexer (READM) with similar functionality as a ROADM in the electronic domain.
摘要:
The present invention provides a serializer/deserializer (SERDES) circuit that can cover both client- and network-side interfaces for high-speed data rates. The present invention leverages commonality between the client and network (also known as line) side, and accommodates differences in a flexible manner. In one exemplary embodiment, the present invention provides a four-channel implementation to meet the requirement of both interfaces. The SERDES circuit can be capable of supporting both 40 Gb/s and 56 Gb/s data rates, can include an integrated DQPSK pre-coder and I/Q input/output signals, and can support RZ clock recovery. Additionally, the SERDES circuit can include differential coding support, electronic pre-emphasis, receiver-side electronic dispersion compensation, and the like.
摘要:
The present invention provides a high-speed 100G optical transceiver for InfiniBand and Ethernet with associated mapping to frame InfiniBand and Ethernet into GFP-T. The optical transceiver utilizes an architecture which relies on standards-compliant (i.e., multi-sourced) physical client interfaces. These client interfaces are back-ended with flexible, programmable Field Programmable Gate Array (FPGA) modules to accomplish either InfiniBand or Ethernet protocol control, processing, re-framing, and the like. Next, signals are encoded with Forward Error Correction (FEC) and can include additional Optical Transport Unit (OTU) compliant framing structures. The resulting data is processed appropriately for the subsequent optical re-transmission, such as, for example, with differential encoding, Gray encoding, I/Q Quadrature encoding, and the like. The data is sent to an optical transmitter block and modulated onto an optical carrier. Also, the same process proceeds in reverse on the receive side.
摘要:
A Microelectromechanical systems (MEMS)-based N×M cross-point switch, a MEMS-based system, and a method provide MEMS-based cross-point electrical switching for a Layer 0 flow-based switch. The N×M cross-point switch includes N inputs each at least 10 Gbps, M output each at least 10 Gbps, a plurality of Radio Frequency (RF) MEMS switches selectively interconnecting the N inputs to the M outputs; and control and addressing circuitry to selectively control the plurality of RF MEMS switches to switch each of the N inputs to a corresponding output of the M outputs. The systems and methods provide an electrical switching fabric for flow-based switching of wavelengths that can be part of a Reconfigurable Electrical Add/Drop Multiplexer (READM) with similar functionality as a ROADM in the electronic domain.
摘要:
A system for providing optical connections that may include an optical grating structure and an optical waveguide coupled to the optical grating structure. The optical grating structure may be configured to receive an optical wave, through an interposer, from an optical source. The optical grating structure may be configured to transform the optical wave into a predetermined electromagnetic propagation mode.
摘要:
A concatenated Forward Error Correction (FEC) code method, at an intermediate point, includes receiving, from an ingress point, a signal that is fully encoded with a concatenated FEC code, wherein the concatenated FEC code includes at least an inner code and an outer code; partially decoding the signal by decoding the inner code at the intermediate point; and transmitting the partially decoded signal towards an egress point where the partially decoded signal is fully decoded.
摘要:
A fiber optic system includes a transmitter configured to utilize a plurality of modulation formats and a receiver communicatively coupled to the transmitter and configured to utilize a plurality of modulation formats. The transmitter and the receiver are cooperatively configured to set a modulation format of the plurality of modulation formats based upon optical signal-to-noise ratio associated therewith. A flexible bandwidth adaptation method includes monitoring at least one aspect of an optical link at a network element, responsive to the at least one aspect, computing a new modulation scheme for the optical link, and, if a solution is found for the new modulation scheme, changing to the new modulation format.
摘要:
A system for providing optical connections that may include an optical grating structure and an optical waveguide coupled to the optical grating structure. The optical grating structure may be configured to receive an optical wave, through an interposer, from an optical source. The optical grating structure may be configured to transform the optical wave into a predetermined electromagnetic propagation mode.