Abstract:
Some embodiments of a device comprise an image-forming medium and one or more sensors that are attached to the image-forming medium. Also, in some embodiments, the image-forming medium is paper or a medium that has paper-like characteristics, at least some of the one or more sensors are microelectromechanical systems (MEMS), or the one or more sensors are configured to be powered by wireless power transfer. And some embodiments of the device further comprise a system-on-a-chip that is in communication with the one or more sensors, a transceiver that is in communication with the system-on-a-chip, or a radio-frequency identification (RFID) tag.
Abstract:
Some embodiments of a device comprise an image-forming medium and one or more sensors that are attached to the image-forming medium. Also, in some embodiments, the image-forming medium is paper or a medium that has paper-like characteristics, at least some of the one or more sensors are microelectromechanical systems (MEMS), or the one or more sensors are configured to be powered by wireless power transfer. And some embodiments of the device further comprise a system-on-a-chip that is in communication with the one or more sensors, a transceiver that is in communication with the system-on-a-chip, or a radio-frequency identification (RFID) tag.
Abstract:
This document discusses, among other things, a cap wafer and a via wafer configured to encapsulate a single proof-mass 3-axis gyroscope formed in an x-y plane of a device layer. The single proof-mass 3-axis gyroscope can include a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 3-axis gyroscope sensor, a central suspension system configured to suspend the 3-axis gyroscope from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 3-axis gyroscope about a z-axis normal to the x-y plane at a drive frequency.
Abstract:
A method embodiment includes providing a micro-electromechanical (MEMS) wafer including a polysilicon layer having a first and a second portion. A carrier wafer is bonded to a first surface of the MEMS wafer. Bonding the carrier wafer creates a first cavity. A first surface of the first portion of the polysilicon layer is exposed to a pressure level of the first cavity. A cap wafer is bonded to a second surface of the MEMS wafer opposite the first surface of the MEMS wafer. The bonding the cap wafer creates a second cavity comprising the second portion of the polysilicon layer and a third cavity. A second surface of the first portion of the polysilicon layer is exposed to a pressure level of the third cavity. The first cavity or the third cavity is exposed to an ambient environment.
Abstract:
An electrical cross-point switch N inputs, each at least 10 Gbps, connected to input transmission lines; M outputs, each at least 10 Gbps, connected to output transmission lines; at least two Radio Frequency (RF) Microelectromechanical systems (MEMS) switches selectively interconnecting each input transmission line and each output transmission line; and control and addressing circuitry configured to selectively control interconnection of each input transmission line and each output transmission line via the at least two RF MEMS switches. The at least two RF MEMS switches can be embedded in each input transmission line and each output transmission line. The input transmission lines and the output transmission lines can each be partially shielded microwave transmission lines.
Abstract:
Methods, systems, computer-readable media, and apparatuses for high density Micro-Electro-Mechanical Systems (MEMS) are presented. In some embodiments, a method for manufacturing a micro-electro-mechanical device on a substrate can comprise etching a release via through a layer of the device. The method can further comprise creating a cavity in the layer of the device using the release via as a conduit to access the desired location of the cavity, the cavity enabling movement of a transducer of the device. The method can then comprise depositing low impedance, electrically conductive material into the release via to form an electrically conductive path through the layer. Finally, the method can comprise electrically coupling the electrically conductive material to an electrode of the transducer.
Abstract:
A method embodiment includes providing a micro-electromechanical (MEMS) wafer including a polysilicon layer having a first and a second portion. A carrier wafer is bonded to a first surface of the MEMS wafer. Bonding the carrier wafer creates a first cavity. A first surface of the first portion of the polysilicon layer is exposed to a pressure level of the first cavity. A cap wafer is bonded to a second surface of the MEMS wafer opposite the first surface of the MEMS wafer. The bonding the cap wafer creates a second cavity comprising the second portion of the polysilicon layer and a third cavity. A second surface of the first portion of the polysilicon layer is exposed to a pressure level of the third cavity. The first cavity or the third cavity is exposed to an ambient environment.
Abstract:
A method for manufacturing a system in a wafer for measuring an absolute and a relative pressure includes etching a shallow and a deep cavity in the wafer. A top wafer is applied and the top wafer is thinned for forming a first respectively second membrane over the shallow respectively deep cavity, and for forming in the top wafer first respectively second bondpads at the first respectively second membrane resulting in a first respectively second sensor. Back grinding the wafer results in an opened deep cavity and a still closed shallow cavity. The first bondpads of the first sensor measure an absolute pressure and the second bondpads of the second sensor measure a relative pressure. The etching in the first step defines the edges of the first membrane and of the second membrane in respectively the sensors formed from the shallow and the deep cavity.
Abstract:
This document discusses, among other things, a cap wafer and a via wafer configured to encapsulate a single proof-mass 3-axis gyroscope formed in an x-y plane of a device layer. The single proof-mass 3-axis gyroscope can include a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 3-axis gyroscope sensor, a central suspension system configured to suspend the 3-axis gyroscope from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 3-axis gyroscope about a z-axis normal to the x-y plane at a drive frequency.
Abstract:
A system for driving a MEMS array having a number of MEMS structures, each defining at least one row terminal and one column terminal, envisages: a number of row driving stages, each for supplying row-biasing signals to the row terminal of each MEMS structure associated to a respective row; a number of column driving stages, each for supplying column-biasing signals to the column terminal of each MEMS structure associated to a respective column; and a control unit, for supplying row-address signals to the row driving stages for generation of the row-biasing signals and for supplying column-address signals to the column driving stages for generation of the column-biasing signals. The control unit further supplies row-deactivation and/or column-deactivation signals to one or more of the row and column driving stages, for causing deactivation of one or more rows and/or columns of the MEMS array.