摘要:
A power assisted method and injector device for controllably delivering to patients a dispersion medicament or diagnostically active agent, the homogeneity of which is preserved throughout delivery. Diagnostically active agents disclosed are gas microbubble suspensions useful in ultrasonic diagnostic imaging and liposomal formulations in which liposome vesicles are loaded with iodinated compounds.
摘要:
A power assisted method and injector device for controllably delivering to patients a dispersion medicament or diagnostically active agent, the homogeneity of which is preserved throughout delivery. Diagnostically active agents disclosed are gas microbubble suspensions useful in ultrasonic diagnostic imaging and liposomal formulations in which liposome vesicles are loaded with iodinated compounds.
摘要:
A power assisted method and injector device for controllably delivering to patients a dispersion medicament or diagnostically active agent, the homogeneity of which is preserved throughout delivery. Diagnostically active agents disclosed are gas microbubble suspensions useful in ultrasonic diagnostic imaging and liposomal formulations in which liposome vesicles are loaded with iodinated compounds.
摘要:
A power assisted method and injector device for controllably delivering to patients a dispersion medicament or diagnostically active agent, the homogeneity of which is preserved throughout delivery. Diagnostically active agents disclosed are gas microbubble suspensions useful in ultrasonic diagnostic imaging and liposomal formulations in which liposome vesicles are loaded with iodinated compounds.
摘要:
A power assisted method and injector device for controllably delivering to patients a dispersion medicament or diagnostically active agent, the homogeneity of which is preserved throughout delivery. Diagnostically active agents disclosed are gas microbubble suspensions useful in ultrasonic diagnostic imaging and liposomal formulations in which liposome vesicles are loaded with iodinated compounds.
摘要:
The invention is directed to injectable suspensions of gas-filled microvesicles, as well as methods of preparing and using the same, especially as ultrasound contrast agents.
摘要:
Disclosed are suspensions of gas microbubbles immobilised within a frozen aqueous carrier liquid comprising usual additives and stabilisers, in which the carrier liquid is a physiologically acceptable, the immobilised gas microbubbles are microbubbles bound by an evanescent envelope or a tangible membrane. The suspensions, when in liquid form, are injectable and useful as a contrast agents in ultrasonic imaging of blood pool and tissue of living beings. The gas microbubbles are immobilised within the carrier by freezing a suspension of microbubbles with average sizes below 50 .mu.m, preferably below 10 .mu.m and more preferably between 2 .mu.m and 8 .mu.m, to a temperature between -1.degree. C. and -76.degree. C. and maintaining this temperature for prolonged periods of time. The microbubbles may be stabilised by a surfactant such as a lamellar phospholipid or may comprise a membrane made of synthetic or natural polymer or protein. A method of cold storage of microbubble suspensions as well as their use is also disclosed.
摘要:
Disclosed are suspensions of gas microbubbles immobilised within a frozen aqueous carrier liquid comprising usual additives and stabilisers, in which the carrier liquid is a physiologically acceptable, the immobilised gas microbubbles are microbubbles bound by an evanescent envelope or a tangible membrane. The suspensions, when in liquid form, are injectable and useful as a contrast agents in ultrasonic imaging of blood pool and tissue of living beings. The gas microbubbles are immobilised within the carrier by freezing a suspension of microbubbles with average sizes below 50 .mu.m, preferably below 10 .mu.m and more preferably between 2 .mu.m and 8 .mu.m, to a temperature between -1.degree. C. and -76.degree. C. and maintaining this temperature for prolonged periods of time. The microbubbles may be stabilised by a surfactant such as a lamellar phospholipid or may comprise a membrane made of synthetic or natural polymer or protein. A method of cold storage of microbubble suspensions as well as their use is also disclosed.
摘要:
Disclosed are injectable suspensions of gas filled microbubbles in an aqueous carrier liquid usable as contrast agents in ultrasonic echography. The suspensions comprise amphipathic compounds of which at least one may be a laminarized phospholipid as a stabiliser of the microbubbles against collapse with time and pressure. The concentration of phospholipids in the carrier liquid is below 0.01% wt but is at least equal to or above that at which phospholipid molecules are present solely at the gas microbubble-liquid interface. Also disclosed is a method of preparation of the stable suspensions of air or gas filled microbubbles.
摘要:
Disclosed are suspensions of gas microbubbles immobilised within a frozen aqueous carrier liquid comprising usual additives and stabilisers, in which the carrier liquid is a physiologically acceptable, the immobilised gas microbubbles are microbubbles bound by an evanescent envelope or a tangible membrane. The suspensions, when in liquid form, are injectable and useful as a contrast agents in ultrasonic imaging of blood pool and tissue of living beings. The gas microbubbles are immobilised within the carrier by freezing a suspension of microbubbles with average sizes below 50 .mu.m, preferably below 10 .mu.m and more preferably between 2 .mu.m and 8 .mu.m, to a temperature between -1.degree. C. and -76.degree. C. and maintaining this temperature for prolonged periods of time. The microbubbles may be stabilised by a surfactant such as a lamellar phospholipid or may comprise a membrane made of synthetic or natural polymer or protein. A method of cold storage of microbubble suspensions as well as their use is also disclosed.