摘要:
In one aspect, the invention generally relates to use of miR-34 as a biomarker to estimate TP53 function in a cell. In another aspect, the invention generally relates to multiple uses of miR-34 and siRNAs functionally and structurally related to miR-34 for the treatment of cancer.
摘要:
In one aspect, the invention generally relates to use of miR-34 as a biomarker to estimate TP53 function in a cell. In another aspect, the invention generally relates to multiple uses of miR-34 and siRNAs functionally and structurally related to miR-34 for the treatment of cancer.
摘要:
In one aspect, the invention generally relates to compositions comprising miR-34 and siRNAs functionally and structurally related to miR-34 for the treatment of cancer.
摘要:
In one aspect, a method is provided of inhibiting proliferation of a mammalian cell comprising introducing into said cell an effective amount of at least one microRNA-specific inhibitor of at least one miR-106b family member. In another aspect a method is provided for accelerating proliferation of a mammalian cell comprising introducing into said cell an effective amount of at least one miR-106b family member.
摘要:
The present invention provides methods of making a population of nucleic acid molecules, wherein each nucleic acid molecule comprises a predetermined nucleic acid sequence, each of said methods comprising the steps of: (a) synthesizing, on a substrate, a population of nucleic acid molecules wherein: i) each synthesized nucleic acid molecule comprises a predetermined nucleic acid sequence; and ii) each synthesized nucleic acid molecule is localized to a defined area of said substrate; (b) harvesting said population of synthesized nucleic acid molecules from said substrate to yield harvested nucleic acid molecules; and (c) introducing said harvested nucleic acid molecules into vector molecules.
摘要:
The invention provides methods for evaluating the representation of expected nucleic acid molecules in a test population of nucleic acid molecules. The methods each comprise the steps of: (a) hybridizing a population of sample nucleic acid molecules obtained from a test population of nucleic acid molecules to a substrate comprising a population of target nucleic acid molecules, wherein (i) each target nucleic acid molecule comprises a predetermined sequence corresponding to an expected nucleic acid molecule, and (ii) each target nucleic acid molecule is localized to a defined area of the substrate; and (b) evaluating the representation of expected nucleic acid molecules in the test population of nucleic acid molecules by analyzing the pattern of hybridization of the sample population of nucleic acid molecules to the target nucleic acid molecules.