Abstract:
In one embodiment, a method includes receiving a designation of one or more items of digital media; receiving a communication regarding the one or more items of digital media; associating the one or more items of digital media with the communication based on the designation; and setting a privacy level for the communication and the one or more items of digital media on a social-networking system based on a privacy setting of a user on the social-networking system.
Abstract:
The present invention discloses SNP markers associated with PCOS and provides probes, chips, primers, kits and methods for detecting the SNP markers. Furthermore, the present invention relates to the use of SNPs in predicting or diagnosing the risk of PCOS.
Abstract:
Various pipeline ADCs are disclosed that substantially compensate for interference or distortion that results from imperfections with various ADC modules of the pipeline ADCs. The pipeline ADCs include various ADC stages and various compensation stages that are coupled to the various ADC stages. The various ADC stages convert their corresponding analog inputs from an analog signal domain to a digital signal domain to provide various digital output signals and various analog residual signals to subsequent ADC stages. The various compensation stages compensate for interference or distortion that is impressed onto the various analog residual signals which results from imperfections within previous ADC stages.
Abstract:
A method and apparatus are described that result in an improved acquisition of a received communication signal containing a large frequency offset. The method and apparatus raises a derotated sequence of data to a power of an integer provide a sinusoidal spectral component. The method and apparatus determines a cross product based upon the sinusoidal spectral component to provide a phase error. The method and apparatus determines an oscillator signal based upon the phase error. The method and apparatus adjusts the received communication signal based upon the oscillator signal to compensate for the large frequency offset to provide the derotated sequence of data.
Abstract:
A method and apparatus is disclosed to compensate for impairments within a data converter such that its output is a more accurate representation of its input. The data converter includes a main data converter, a reference data converter, and a correction module. The main data converter may be characterized as having the impairments. As a result, the output of the main data converter is not the most accurate representation of its input. The reference data converter is designed such that the impairments are not present. The correction module estimates the impairments present within the main data converter using its output and the reference data converter to generate corrections coefficients. The correction module adjusts the output of the main data converter using the corrections coefficients to improve the performance of the data converter.
Abstract:
Label-free, multiplexed DNA assay using fluorescent conjugated polymers as a detection probe to illustrate hybridization on metallic striped nanorods are disclosed. Different DNA capture probes are encoded by the different reflectivity of Au and Ag stripe patterns. The integration of fluorescent conjugated polymers as detection moieties with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format is also provided.
Abstract:
An exemplary LED streetlamp installation seat and an LED lamp both has a seat body (1), which has a first accommodating chamber (11) and a second accommodating chamber (12) the first accommodating chamber (11) being used to accommodate a control device (7) for controlling the LED streetlamp and the second accommodating chamber (12) being used to accommodate a fixing device (8) for installing the LED lamp to a lamp-post; and a cover cap, corresponding to the first and the second accommodating chambers (11, 12), which has a first cap (21) and a second cap (22), the first cap (21) and the second cap (22) being hinge-joined. The first cap (21), corresponding to the first accommodating chamber (11), is detachably connected to the first accommodating chamber (11). The second cap (22), corresponding to the second accommodating chamber (21), is detachably connected to the second accommodating chamber (21).
Abstract:
A method and apparatus is disclosed to map a sequence of data to Quadrature Amplitude Modulation (QAM) constellation symbols. The method and apparatus encodes only a portion of the sequence of data and leaves a remaining portion of the sequence of data unencoded. The encoded portion of the sequence of data and the remaining unencoded portion of the sequence of data are then mapped into modulation symbols of the QAM constellation. The encoded portion of the sequence of data selects subsets of the QAM constellation, and the remaining unencoded portion of the sequence of data determines a specific modulation symbol within each subset of the QAM constellation.
Abstract:
Method and apparatuses are disclosed to substantially compensate for various unwanted interferences and/or distortions within a communications receiver. Each of these apparatuses and methods estimate the various unwanted interferences and/or distortions within the communications receiver. Each of these apparatuses and methods remove the estimates of the various unwanted interferences and/or distortions within the communications receiver from one or more communications signals within the communications receiver to substantially compensate for the various unwanted interferences and/or distortions.
Abstract:
Method and apparatuses are disclosed to substantially compensate for various unwanted interferences and/or distortions within a communications receiver. Each of these apparatuses and methods estimate the various unwanted interferences and/or distortions within the communications receiver. Each of these apparatuses and methods remove the estimates of the various unwanted interferences and/or distortions within the communications receiver from one or more communications signals within the communications receiver to substantially compensate for the various unwanted interferences and/or distortions.