Abstract:
A memory controller and method for managing the issuance of read and write requests to a system memory is provided. The number of outstanding read requests and write requests issued to the system memory are separately monitored and further issuance of read and write requests to the system memory is separately controlled based on the number of outstanding read and write requests, respectively. For example, the issuance of read and write requests can be managed by halting and resuming the issuance of read and write requests to the system memory to maintain the number of outstanding read requests between first and second read thresholds and to maintain the number of outstanding write requests between first and second write thresholds, respectively.
Abstract:
A layout for simultaneously sub-accessible memory modules is disclosed. In one embodiment, a memory module includes a printed circuit board having a plurality of sectors, each sector being electrically isolated from the other sectors and having a multi-layer structure. At least one memory device is attached to each sector, the memory devices being organized into a plurality of memory ranks. A driver is attached to the printed circuit board and is operatively coupled to the memory ranks. The driver is adapted to be coupled to a memory interface of the computer system. Because the sectors are electrically-isolated from adjacent sectors, the memory ranks are either individually or simultaneously, or both individually and simultaneously accessible by the driver so that one or more memory devices on a particular sector may be accessed at one time. In an alternate embodiment, the printed circuit board includes a driver sector electrically isolated from the other sectors and having a multi-layer structure, the driver being attached to the driver sector.
Abstract:
A layout for simultaneously sub-accessible memory modules is disclosed. In one embodiment, a memory module includes a printed circuit board having a plurality of sectors, each sector being electrically isolated from the other sectors and having a multi-layer structure. At least one memory device is attached to each sector, the memory devices being organized into a plurality of memory ranks. A driver is attached to the printed circuit board and is operatively coupled to the memory ranks. The driver is adapted to be coupled to a memory interface of the computer system. Because the sectors are electrically-isolated from adjacent sectors, the memory ranks are either individually or simultaneously, or both individually and simultaneously accessible by the driver so that one or more memory devices on a particular sector may be accessed at one time. In an alternate embodiment, the printed circuit board includes a driver sector electrically isolated from the other sectors and having a multi-layer structure, the driver being attached to the driver sector.