-
公开(公告)号:US10748921B2
公开(公告)日:2020-08-18
申请号:US16171160
申请日:2018-10-25
Applicant: Micron Technology, Inc.
Inventor: Liu Liu , David Daycock , Rithu K. Bhonsle , Giovanni Mazzone , Narula Bilik , Jordan D. Greenlee , Minsoo Lee , Benben Li
IPC: H01L27/11582 , H01L27/11524 , H01L21/32 , H01L27/1157 , H01L21/311 , H01L27/11556
Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
-
公开(公告)号:US20190206727A1
公开(公告)日:2019-07-04
申请号:US16172218
申请日:2018-10-26
Applicant: Micron Technology, Inc.
Inventor: John B. Matovu , David S. Meyaard , Gowrisankar Damarla , Sri Sai Sivakumar Vegunta , Kunal Shrotri , Shashank Saraf , Kevin R. Gast , Jivaan Kishore Jhothiraman , Suresh Ramarajan , Lifang Xu , Rithu K. Bhonsle , Rutuparna Narulkar , Matthew J. King
IPC: H01L21/768 , H01L23/522 , H01L23/528 , H01L27/11556 , H01L27/11582
Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material. Related methods of forming semiconductor structures and related semiconductor devices are disclosed.
-
公开(公告)号:US11088017B2
公开(公告)日:2021-08-10
申请号:US16806312
申请日:2020-03-02
Applicant: Micron Technology, Inc.
Inventor: John B. Matovu , David S. Meyaard , Gowrisankar Damarla , Sri Sai Sivakumar Vegunta , Kunal Shrotri , Shashank Saraf , Kevin R. Gast , Jivaan Kishore Jhothiraman , Suresh Ramarajan , Lifang Xu , Rithu K. Bhonsle , Rutuparna Narulkar , Matthew J. King
IPC: H01L21/768 , H01L23/522 , H01L23/528 , H01L21/3105 , H01L27/11582 , H01L27/11556 , H01L27/11575 , H01L27/11548
Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material. Related methods of forming semiconductor structures and related semiconductor devices are disclosed.
-
4.
公开(公告)号:US20200350333A1
公开(公告)日:2020-11-05
申请号:US16933693
申请日:2020-07-20
Applicant: Micron Technology, Inc.
Inventor: Liu Liu , David Daycock , Rithu K. Bhonsle , Giovanni Mazzone , Narula Bilik , Jordan D. Greenlee , Minsoo Lee , Benben Li
IPC: H01L27/11582 , H01L27/11524 , H01L21/32 , H01L27/1157 , H01L21/311 , H01L27/11556
Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
-
公开(公告)号:US11569258B2
公开(公告)日:2023-01-31
申请号:US16933693
申请日:2020-07-20
Applicant: Micron Technology, Inc.
Inventor: Liu Liu , David Daycock , Rithu K. Bhonsle , Giovanni Mazzone , Narula Bilik , Jordan D. Greenlee , Minsoo Lee , Benben Li
IPC: H01L27/11578 , H01L27/11582 , H01L27/11524 , H01L21/32 , H01L27/1157 , H01L21/311 , H01L27/11556
Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
-
6.
公开(公告)号:US20200135751A1
公开(公告)日:2020-04-30
申请号:US16171160
申请日:2018-10-25
Applicant: Micron Technology, Inc.
Inventor: Liu Liu , David Daycock , Rithu K. Bhonsle , Giovanni Mazzone , Narula Bilik , Jordan D. Greenlee , Minsoo Lee , Benben Li
IPC: H01L27/11582 , H01L27/11524 , H01L27/11556 , H01L27/1157 , H01L21/311 , H01L21/32
Abstract: Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
-
公开(公告)号:US10600682B2
公开(公告)日:2020-03-24
申请号:US16172218
申请日:2018-10-26
Applicant: Micron Technology, Inc.
Inventor: John B. Matovu , David S. Meyaard , Gowrisankar Damarla , Sri Sai Sivakumar Vegunta , Kunal Shrotri , Shashank Saraf , Kevin R. Gast , Jivaan Kishore Jhothiraman , Suresh Ramarajan , Lifang Xu , Rithu K. Bhonsle , Rutuparna Narulkar , Matthew J. King
IPC: H01L21/768 , H01L23/522 , H01L23/528 , H01L21/3105 , H01L27/11582 , H01L27/11556 , H01L27/11575 , H01L27/11548
Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material. Related methods of forming semiconductor structures and related semiconductor devices are disclosed.
-
公开(公告)号:US10269625B1
公开(公告)日:2019-04-23
申请号:US15857197
申请日:2017-12-28
Applicant: Micron Technology, Inc.
Inventor: John B. Matovu , David S. Meyaard , Gowrisankar Damarla , Sri Sai Sivakumar Vegunta , Kunal Shrotri , Shashank Saraf , Kevin R. Gast , Jivaan Kishore Jhothiraman , Suresh Ramarajan , Lifang Xu , Rithu K. Bhonsle , Rutuparna Narulkar , Matthew J. King
IPC: H01L21/768 , H01L23/522 , H01L23/528 , H01L27/11582 , H01L27/11556
Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material. Related methods of forming semiconductor structures and related semiconductor devices are disclosed.
-
-
-
-
-
-
-