Abstract:
Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
Abstract:
Some embodiments include an integrated structure having a first opening extending through a stack of alternating insulative levels and conductive levels. A nitride structure is within the first opening and narrows the first opening to form a second opening. Detectable oxide is between the nitride structure and one or more of the conductive levels. Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. A first opening extends through the vertically-stacked levels to the conductive material and has opposing sidewalls along a cross-section. Nitride liners are along the sidewalls of the first opening. Detectable oxide is between at least one of the nitride liners and one or more of the vertically-stacked conductive levels. Some embodiments include methods for forming integrated structures.
Abstract:
Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
Abstract:
Various embodiments include apparatuses and electronic devices. One such apparatus can include a first dielectric material and a second dielectric material, and a conductive material between the first dielectric material and the second dielectric material. A charge storage element, such as a floating gate or charge trap, is located between the first dielectric material and the second dielectric material and adjacent to the conductive material. The charge storage element has a first surface and a second surface. The first and second surfaces are substantially separated from the first dielectric material and the second dielectric material, respectively, by a first gap and a second gap. In various embodiments, the gaps are air gaps. Additional apparatuses and methods are disclosed.
Abstract:
Various embodiments include apparatuses and methods of forming the same. One such apparatus can include a first dielectric material and a second dielectric material, and a conductive material between the first dielectric material and the second dielectric material. A charge storage element, such as a floating gate or charge trap, is between the first dielectric material and the second dielectric material and adjacent to the conductive material. The charge storage element has a first surface and a second surface. The first and second surfaces are substantially separated from. the first dielectric material and the second dielectric material, respectively, by a first air gap and a second air gap. Additional apparatuses and methods are disclosed.
Abstract:
Various embodiments include methods of forming memory cells. In one embodiment, a first dielectric material and a second dielectric material are formed on a substrate. A conductive material is formed between the first dielectric material and the second dielectric material. An opening is formed through the first dielectric material, the second dielectric material, and the conductive material. The conductive material is recessed laterally from the opening to form a recessed control gate and to expose portions of the first dielectric material and the second dielectric material. Portions of a third dielectric material are formed over the exposed portions of the first dielectric material and the second dielectric material and a charge storage element is formed between the portions of the third dielectric material and adjacent to the recessed control gate. Portions of the third dielectric material are substantially removed. Additional methods, as well as apparatuses, are disclosed.
Abstract:
Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.
Abstract:
A method to fabricate a three dimensional memory structure may include creating a stack of layers including a conductive source layer, a first insulating layer, a select gate source layer, and a second insulating layer, and an array stack. A hole through the stack of layers may then be created using the conductive source layer as a stop-etch layer. The source material may have an etch rate no faster than 33% as fast as an etch rate of the insulating material for the etch process used to create the hole. A pillar of semiconductor material may then fill the hole, so that the pillar of semiconductor material is in electrical contact with the conductive source layer.
Abstract:
Various embodiments include apparatuses and methods of forming the same. One such apparatus can include a first dielectric material and a second dielectric material, and a conductive material between the first dielectric material and the second dielectric material. A charge storage element, such as a floating gate or charge trap, is between the first dielectric material and the second dielectric material and adjacent to the conductive material. The charge storage element has a first surface and a second surface. The first and second surfaces are substantially separated from the first dielectric material and the second dielectric material, respectively, by a first air gap and a second air gap. Additional apparatuses and methods are disclosed.
Abstract:
Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies.