摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material. One of the systems includes a gas mixing apparatus for fragmenting and mixing waste magnetic material comprising a plurality of reaction vessels, each of the plurality of reaction vessels comprising an internal liner having a plurality of openings defined therein, each of the internal liners configured to receive magnetic material and facilitate the circulation of gas around the magnetic material through the plurality of openings, and a pump and valve assembly operatively coupled to the plurality of reaction vessels to control the introduction of gas into the plurality of reaction vessels and to control transfer of gas between the plurality of reaction vessels.
摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material. One of the systems includes a gas mixing apparatus for fragmenting and mixing waste magnetic material comprising a plurality of reaction vessels, each of the plurality of reaction vessels comprising an internal liner having a plurality of openings defined therein, each of the internal liners configured to receive magnetic material and facilitate the circulation of gas around the magnetic material through the plurality of openings, and a pump and valve assembly operatively coupled to the plurality of reaction vessels to control the introduction of gas into the plurality of reaction vessels and to control transfer of gas between the plurality of reaction vessels.
摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance One of the methods includes fragmenting magnetic material to form a powder, mixing the powder with a) a rare earth material R and b) an elemental additive A to produce a homogeneous powder, wherein the rare earth material comprises at least one of: i) Nd, ii) Pr, and iii) Dy, and the elemental additive A comprises at least one of: i) Co, ii) Cu, and iii) Fe, and sintering and magnetizing the homogenous powder to form a Nd—Fe—B magnetic product.
摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material. One of the systems includes a system for harvesting a waste magnet from an end-of-life product, the system comprising a positioning mechanism that defines a recess to receive and locate the end-of-life product relative to the positioning mechanism, the end-of-life product including the waste magnet, a separating station to substantially separate a portion of the end-of-life product containing the waste magnet from the remainder of the end-of-life product when the positioning mechanism moves the respective end-of-life product through the separating station, and a transport station that receives the portion of the end-of-life product containing the waste magnet from the positioning mechanism when the positioning mechanism moves the respective end-of-life product to the transport station.
摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material. One of the systems includes a system for harvesting a waste magnet from an end-of-life product, the system comprising a positioning mechanism that defines a recess to receive and locate the end-of-life product relative to the positioning mechanism, the end-of-life product including the waste magnet, a separating station to substantially separate a portion of the end-of-life product containing the waste magnet from the remainder of the end-of-life product when the positioning mechanism moves the respective end-of-life product through the separating station, and a transport station that receives the portion of the end-of-life product containing the waste magnet from the positioning mechanism when the positioning mechanism moves the respective end-of-life product to the transport station.
摘要:
Recycled Nd—Fe—B sintered magnets. One of the recycled Nd—Fe—B sintered magnets includes a composition of WaRbAc, where waste material W comprises material from a waste Nd—Fe—B sintered magnet, rare earth material R comprises at least one of: Nd or Pr, and elemental additives A comprises at least one of: Nd, Pr, Dy, Co, Cu, or Fe, and indices a, b, and c indicate atomic percentages of the corresponding compositions or elements and the atomic percentages of the rare earth material R and the elemental additives A have values satisfying Nd[0.1-19 at. %*s(Nd), x]Pr[0.1-19 at. %*s(Pr), y]Dy[0.1-19 at. %*s(Dy), z]Co[0 at. %, d]Cu[0 at. %, e]Fe[0 at. %, f] where [m,n] means a range from minimum m and maximum n, s(t) is the atomic percent of element t in starting composition, x=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), y=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), z=18 at. %-[81,99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), d=3 at. %-[81,99.9] at. %*s(Co), e=0.3 at. %-[81,99.9] at. %*s(Cu), and f=77 at. %-[81,99.9] at. %*(s(Fe)+s(Co)).
摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance. One of the methods includes demagnetizing magnetic material from a waste magnet assembly by cyclic heating and cooling of the magnetic material, fragmenting adhesives attached to the magnetic material, cracking coating layers of the magnetic material, and subjecting the magnetic material to at least one of: a) a mechanical treatment or b) a chemical treatment, to remove the coating layers and prepare the magnetic material without impurities, fragmenting the demagnetized magnetic material to form a powder, and mixing the powder with a rare earth material R and an elemental additive A to produce a homogeneous powder, wherein the rare earth material R comprises at least one of: Nd or Pr, and the elemental additive A comprises at least one of: Nd, Pr, Dy, Co, Cu, and Fe.
摘要:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for recycling magnetic material to restore or improve the magnetic performance. One of the methods includes demagnetizing magnetic material from a waste magnet assembly by cyclic heating and cooling of the magnetic material, fragmenting adhesives attached to the magnetic material, cracking coating layers of the magnetic material, and subjecting the magnetic material to at least one of: a) a mechanical treatment or b) a chemical treatment, to remove the coating layers and prepare the magnetic material without impurities, fragmenting the demagnetized magnetic material to form a powder, and mixing the powder with a rare earth material R and an elemental additive A to produce a homogeneous powder, wherein the rare earth material R comprises at least one of: Nd or Pr, and the elemental additive A comprises at least one of: Nd, Pr, Dy, Co, Cu, and Fe.
摘要:
Recycled Nd—Fe—B sintered magnets. One of the recycled Nd—Fe—B sintered magnets includes a composition of WaRbAc, where waste material W comprises material from a waste Nd—Fe—B sintered magnet, rare earth material R comprises at least one of: Nd or Pr, and elemental additives A comprises at least one of: Nd, Pr, Dy, Co, Cu, or Fe, and indices a, b, and c indicate atomic percentages of the corresponding compositions or elements and have values satisfying Nd[0.1-19 at. %*s(Nd), x]Pr[0.1-19 at. %*s(Pr),y]Dy[0.1-19%*s(Dy),z]Co[0,d]Cu[0,e]Fe[0,f] where [m, n] means a range from minimum m and maximum n, s(t) is the atomic percent of element t in starting composition; f(t) is the atomic percent of element t in final composition, x=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), y=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), z=18−[81, 99.9] at. %*(s(Nd)+s(Pr)+s(Dy)), d=3−[81, 99.9] at. %*s(Co), e=0.3−[81, 99.9] at. %*s(Cu), and f=77−[81, 99.9] at. %*(s(Fe)+s(Co)).