摘要:
A method of forming an integrated circuit (IC) includes forming a first and second plurality of spacers on a substrate, wherein the substrate includes a silicon layer, and wherein the first plurality of spacers have a thickness that is different from a thickness of the second plurality of spacers; and etching the silicon layer in the substrate using the first and second plurality of spacers as a mask, wherein the etched silicon layer forms a first plurality and a second plurality of fin field effect transistor (FINFET) channel regions, and wherein the first plurality of FINFET channel regions each have a respective thickness that corresponds to the thickness of the first plurality of spacers, and wherein the second plurality of FINFET channel regions each have a respective thickness that corresponds to the thickness of the second plurality of spacers.
摘要:
A method of forming an integrated circuit (IC) includes forming a first and second plurality of spacers on a substrate, wherein the substrate includes a silicon layer, and wherein the first plurality of spacers have a thickness that is different from a thickness of the second plurality of spacers; and etching the silicon layer in the substrate using the first and second plurality of spacers as a mask, wherein the etched silicon layer forms a first plurality and a second plurality of fin field effect transistor (FINFET) channel regions, and wherein the first plurality of FINFET channel regions each have a respective thickness that corresponds to the thickness of the first plurality of spacers, and wherein the second plurality of FINFET channel regions each have a respective thickness that corresponds to the thickness of the second plurality of spacers.
摘要:
Non-planar Metal Oxide Field Effect Transistors (MOSFETs) and methods for making non-planar MOSFETs with asymmetric, recessed source and drains having improved extrinsic resistance and fringing capacitance. The methods include a fin-last, replacement gate process to form the non-planar MOSFETs and employ a retrograde metal lift-off process to form the asymmetric source/drain recesses. The lift-off process creates one recess which is off-set from a gate structure while a second recess is aligned with the structure. Thus, source/drain asymmetry is achieved by the physical structure of the source/drains, and not merely by ion implantation. The resulting non-planar device has a first channel of a fin contacting a substantially undoped area on the drain side and a doped area on the source side, thus the first channel is asymmetric. A channel on atop surface of a fin is symmetric because it contacts doped areas on both the drain and source sides.
摘要:
Non-planar Metal Oxide Field Effect Transistors (MOSFETs) and methods for making non-planar MOSFETs with asymmetric, recessed source and drains having improved extrinsic resistance and fringing capacitance. The methods include a fin-last, replacement gate process to form the non-planar MOSFETs and employ a retrograde metal lift-off process to form the asymmetric source/drain recesses. The lift-off process creates one recess which is off-set from a gate structure while a second recess is aligned with the structure. Thus, source/drain asymmetry is achieved by the physical structure of the source/drains, and not merely by ion implantation. The resulting non-planar device has a first channel of a fin contacting a substantially undoped area on the drain side and a doped area on the source side, thus the first channel is asymmetric. A channel on atop surface of a fin is symmetric because it contacts doped areas on both the drain and source sides.
摘要:
A FinFET device with an independent control gate, including: a silicon-on-insulator substrate; a non-planar multi-gate transistor disposed on the silicon-on-insulator substrate, the transistor comprising a conducting channel wrapped around a thin silicon fin; a source/drain extension region; an independently addressable control gate that is self-aligned to the fin and does not extend beyond the source/drain extension region, the control gate comprising: a thin layer of silicon nitride; and a plurality of spacers.
摘要:
FinFETs and methods of making. FinFETs are provided. The FinFET contains two or more fins over a semiconductor substrate; two or more epitaxial layers over side surfaces of the fins; and metal-semiconductor compounds over an upper surfaces of the epitaxial layers. The fin has side surfaces that are substantially vertical relative to the upper surface of the semiconductor substrate. The epitaxial layer has an upper surface that extends at an oblique angle with respect to the side surface of the fin. The FinFET can contain a contact over the metal-semiconductor compounds.
摘要:
FinFETs and methods of making FinFETs are provided. The FinFET contains two or more fins over a semiconductor substrate; two or more epitaxial layers over side surfaces of the fins; and metal-semiconductor compounds over an upper surfaces of the epitaxial layers. The fin has side surfaces that are substantially vertical relative to the upper surface of the semiconductor substrate. The epitaxial layer has an upper surface that extends at an oblique angle with respect to the side surface of the fin. The FinFET can contain a contact over the metal-semiconductor compounds.
摘要:
A FinFET device with an independent control gate, including: a silicon-on-insulator substrate; a non-planar multi-gate transistor disposed on the silicon-on-insulator substrate, the transistor comprising a conducting channel wrapped around a thin silicon fin; a source/drain extension region; an independently addressable control gate that is self-aligned to the fin and does not extend beyond the source/drain extension region, the control gate comprising: a thin layer of silicon nitride; and a plurality of spacers.