摘要:
Three configurations of double barrier resonant tunneling diodes (RTD) are provided along with methods of their fabrication. The tunneling barrier layers of the diode are formed of low band offset dielectric materials and produce a diode with good I-V characteristics including negative differential resistance (NDR) with good peak-to-valley ratios (PVR). Fabrication methods of the RTD start with silicon-on-insulator substrates (SOI), producing silicon quantum wells, and are, therefore, compatible with main stream CMOS technologies such as those applied to SOI double gate transistor fabrication. Alternatively, Ge-on-insulator or SiGe-on-insulator substrates can be used if the quantum well is to be formed of Ge or SiGe. The fabrication methods include the formation of both vertical and horizontal silicon quantum well layers. The vertically formed layer may be oriented so that its vertical sides are in any preferred crystallographic plane, such as the 100 or 110 planes.
摘要:
Provided are the method and device for genetic map construction and the method and device for haplotype determination of a single cell. Wherein the method for genetic map construction includes: whole genome sequencing for at least a single cell from a same species, aligning the sequencing data to reference sequences respectively to determine genotypes of SNP sites, determining male parent a/female parent b typing results of SNP genotypes of a single cell based on the genotypes of SNP sites, dividing the chromosome of the species into linkage regions based on the male parent a/female parent b typing results of SNP genotypes, determining the variation ratio of a/b between two linkage regions to obtain recombination rate between every two continuous linkage regions, determining recombination map of a single cell according to the recombination rate, wherein the boundary site of a and b is the recombination site, determining the recombination rate of each recombination rate based on the recombination map to construct a genetic map of the species.
摘要:
Provided are a single cell classification method, a gene screening method and a device for implementing the method. In that, the single cell classification method includes the following steps: sequencing the whole genomes of a plurality of single cell samples from the same group, respectively, so as to obtain reads from each single cell sample; aligning the reads from each single cell sample to the sequence of a reference genome, respectively, and performing data filtering on said reads; on the basis of the filtered reads, determining a consistent genotype of each single cell sample, in which consistent genotypes of all the single cell samples constitute an SNP dataset of said group; aimed at said each single cell, on the basis of the SNP dataset of said group, determining a corresponding genotype for each cell at a site corresponding to a position in an SNP dataset of the reference genome; and selecting an SNP site associated with cell mutation, and on the basis of the genotype of said single cell at the site, classifying said single cell.
摘要:
Provided are the method and device for genetic map construction and the method and device for haplotype determination of a single cell. Wherein the method for genetic map construction includes: whole genome sequencing for at least a single cell from a same species, aligning the sequencing data to reference sequences respectively to determine genotypes of SNP sites, determining male parent a/female parent b typing results of SNP genotypes of a single cell based on the genotypes of SNP sites, dividing the chromosome of the species into linkage regions based on the male parent a/female parent b typing results of SNP genotypes, determining the variation ratio of a/b between two linkage regions to obtain recombination rate between every two continuous linkage regions, determining recombination map of a single cell according to the recombination rate, wherein the boundary site of a and b is the recombination site, determining the recombination rate of each recombination rate based on the recombination map to construct a genetic map of the species.